979 resultados para leaf and root anatomy
Resumo:
OBJECTIVES To assess the diagnostic value of panoramic views (2D) of patients with impacted maxillary canines by a group of trained orthodontists and oral surgeons, and to quantify the subjective need and reasons for further three-dimensional (3D) imaging. MATERIALS AND METHODS The study comprises 60 patients with panoramic radiographs (2D) and cone beam computed tomography (CBCT) scans (3D), and a total of 72 impacted canines. Data from a standardized questionnaire were compared within (intragroup) and between (intergroup) a group of orthodontists and oral surgeons to assess possible correlations and differences. Furthermore, the questionnaire data were compared with the findings from the CBCT scans to estimate the correlation within and between the two specialties. Finally, the need and reasons for further 3D imaging was analysed for both groups. RESULTS When comparing questionnaire data with the analysis of the respective CBCT scans, orthodontists showed probability (Pr) values ranging from 0.443 to 0.943. Oral surgeons exhibited Pr values from 0.191 to 0.946. Statistically significant differences were found for the labiopalatal location of the impacted maxillary canine (P = 0.04), indicating a higher correlation in the orthodontist group. The most frequent reason mentioned for the further need of 3D analysis was the labiopalatal location of the impacted canines. Oral surgeons were more in favour of performing further 3D imaging (P = 0.04). CONCLUSIONS Orthodontists were more likely to diagnose the exact labiopalatal position of impacted maxillary canines when using panoramic views only. Generally, oral surgeons more often indicated the need for further 3D imaging.
Resumo:
Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.
Resumo:
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Resumo:
INTRODUCTION Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assessed the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47 patients) were measured before and after apical surgery. Data were collected relative to the cementoenamel junction (CEJ) as well as to the crestal bone level (CBL). One observer took all measurements twice (to calculate the intraobserver variability), and the means were used for further analysis. The following parameters were assessed for all treated teeth as well as for specific tooth groups: length of root-end resection and percentage change of root length, preoperative and postoperative RCRs, and percentage change of RCR after apical surgery. RESULTS The mean length of root-end resection was 3.58 ± 1.43 mm (relative to the CBL). This amounted to a loss of 33.2% of clinical and 26% of anatomic root length. There was an overall significant difference between the tooth groups (P < .05). There was also a statistically significant difference comparing mandibular and maxillary teeth (P < .05), but not for incisors/canines versus premolars/molars (P = .125). The mean preoperative and postoperative RCRs (relative to CEJ) were 1.83 and 1.35, respectively (P < .001). With regard to the CBL reference, the mean preoperative and postoperative RCRs were 1.08 and 0.71 (CBL), respectively (P < .001). The calculated changes of RCR after apical surgery were 24.8% relative to CEJ and 33.3% relative to CBL (P < .001). Across the different tooth groups, the mean RCR was not significantly different (P = .244 for CEJ and 0.114 for CBL). CONCLUSIONS This CBCT-based study demonstrated that the RCR is significantly changed after root-end resection in apical surgery irrespective of the clinical (CBL) or anatomic (CEJ) reference levels. The lowest, and thus clinically most critical, postoperative RCR was observed in maxillary incisors. Future clinical studies need to show the impact of resection length and RCR changes on the outcome of apical surgery.
Resumo:
Podredumbre del tallo y la raíz del sorgo causada por Fusarium verticillioides en España
Resumo:
Acknowledgements Mayuri Munasinghe was supported by a Commonwealth Scholarship (ref no. LKCS-2009-384). The development and use of the SNP chip was funded by a BBSRC grant BB/J003336/1. The authors thank Owen Price (University of Wollongong, Australia) for producing the coloured province map of Sri Lanka, Gareth Norton (Aberdeen) for merging the RDP1 SNP data with the Sri Lankan data and Tony Travis (Aberdeen) for help with PCA.
Resumo:
Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.
Resumo:
We have investigated the spatial distributions of expansion and cell cycle in sunflower (Helianthus annuus L.) leaves located at two positions on the stem, from leaf initiation to the end of expansion. Relative expansion rate (RER) was analyzed by following the deformation of a grid drawn on the lamina; relative division rate (RDR) and flow-cytometry data were obtained in four zones perpendicular to the midrib. Calculations for determining in situ durations of the cell cycle and of S-G2-M in the epidermis are proposed. Area and cell number of a given leaf zone increased exponentially during the first two-thirds of the development duration. RER and RDR were constant and similar in all zones of a leaf and in all studied leaves during this period. Reduction in RER occurred afterward with a tip-to-base gradient and lagged behind that of RDR by 4 to 5 d in all zones. After a long period of constancy, cell-cycle duration increased rapidly and simultaneously within a leaf zone, with cells blocked in the G0-G1 phase of the cycle. Cells that began their cycle after the end of the period with exponential increase in cell number could not finish it, suggesting that they abruptly lost their competence to cross a critical step of the cycle. Differences in area and in cell number among zones of a leaf and among leaves of a plant essentially depended on the timing of two events, cessation of exponential expansion and of exponential division.
Resumo:
Detailed analysis of transgenic tobaccos containing a series of chimeric parB promoter/beta-glucuronidase (GUS) gene constructs allowed us to define two auxin-responsive elements (AREs) of 48 bp and 95 bp (positions -210 to -163 and -374 to -280) in the parB promoter. The two AREs responded independently to physiological concentrations of auxin. Gel retardation assays revealed binding of nuclear protein(s) to the sequence conserved between ARE I and ARE II. The auxin responsiveness of the parB promoter did not mediate the pathway through the as-1 element and transcription factor ASF-1. AREs I and II were responsive to auxin at physiological concentrations, whereas as-1 responded only to higher concentrations of auxin which may be interpreted as stress, though as-1 had been reported to be a minimal ARE [Liu, X. & Lam, E. (1994) J. Biol. Chem. 269, 668-675]. Histochemical staining of transgenic tobacco that contained a parB promoter/GUS construct demonstrated the expression of GUS activity in the shoot apex as well as in the root tips, suggesting the involvement of parB expression in meristematic activity or differentiation. The drastic change in auxin responsiveness in the transgenic plants between the 6th and 10th day after imbibition of seeds implies the development or the activation of auxin signal transduction systems during plant development.
Resumo:
Caption title.
Resumo:
Cover title.
Resumo:
Spine title: Anatomy of man and the mammalia.
Resumo:
"Seven hundred and fifty copies of this book have been printed on Van Gelder hand-made paper and the type distributed."
Resumo:
v. 1 pub. by H. C. Sleight, N. Y.; v. 2 pub. by Collins and Hannay, and H. C. Sleight, N. Y.