936 resultados para laboratory
Resumo:
Microalgae are the most sought after sources for biofuel production due to their capacity to utilize carbon and synthesize it into high density liquid. Current energy crisis have put microalgae under scanner for economical production of biodiesel. Modifications like physiological stress and genetic variation is done to increase the lipid yield of the microalgae. A study was conducted using a microalgal consortium for a period of 15 days to evaluate the feasibility of algal biomass from laboratory as well as outdoor culture conditions. Native algal strains were isolated from a tropical freshwater lake. Preliminary growth studies indicated the relationship between the nitrates and phosphates to the community structure through the days. The lipid profile done using Gas chromatography – Mass spectrometry, revealed the profile of the algal community. Resource competition led to isolation of algae, aided in the lipid profile of a single alga. However, further studies on the application of the mixed population are required to make this consortium approach economically viable for producing algae biofuels.
Resumo:
The intense interest in social Hymenoptera, on account of their elaborate sociality and the paradox of altruism, has often suffered from considerable gender imbalance. This is partly due to the fact that worker behaviour and altruism are restricted to the females and partly because males often live off the nest. Yet, understanding the males, especially in the context of mating biology is essential even for understanding the evolution of sociality. Mating patterns have a direct bearing on the levels of intra-colony genetic relatedness, which in turn, along with the associated costs and benefits of worker behaviour, are central to our understanding of the evolution of sociality. Although mating takes place away from the nest in natural colonies of the primitively eusocial wasp Ropalidia marginata, mating can be observed in the laboratory if a male and a female are placed in a transparent, aerated plastic container, and both wasps are in the range of 5-20 days of age. Here, we use this setup and show that males, but not females, mate serially with multiple partners. The multiple mating behaviour of the males is not surprising because in nature males have to mate with a number of females, only a few of whom will go on to lay eggs. The reluctance of R. marginata females to mate with multiple partners is consistent with the expectation of monogamy in primitively eusocial species with totipotent females, although the apparent discrepancy with a previous work with allozyme markers in natural colonies suggesting that females may sometimes mate with two or three different males remains to be resolved.
Resumo:
A detailed study on the removal of pollutants (NOx, aldehydes and CO) from the exhaust of a stationary diesel engine is carried out using barrier discharge hybrid plasma techniques. The objective of the study is to make a comparative analysis. For this purpose, the exhaust treatment was carried out in two stages. In the first stage, the exhaust was treated with plasma process and plasma-adsorbent hybrid process. The effectiveness of the two processes with regard to NOx removal and by-product reduction was discussed. In the second stage, the exhaust was treated by plasma and plasma-catalyst hybrid process. The effectiveness of the two processes with regard to pollutants (NOx, CO) removal and by-product reduction was analyzed. Finally, a comprehensive comparison of different techniques has been made and feasible plasma based hybrid techniques for stationary and non-stationary engine exhaust treatments were proposed.
Resumo:
Lime stabilization prevails to be the most widely adopted in situ stabilization method for controlling the swell-shrink potentials of expansive soils despite construction difficulties and its ineffectiveness in certain conditions. In addition to the in situ stabilization methods presently practiced, it is theoretically possible to facilitate in situ precipitation of lime in soil by successive permeation of calcium chloride (CaCl2 ) and sodium hydroxide (NaOH) solutions into the expansive soil. In this laboratory investigation, an attempt is made to study the precipitation of lime in soil by successive mixing of CaCl2 and NaOH solutions with the expansive soil in two different sequences.Experimental results indicated that in situ precipitation of lime in soil by sequential mixing of CaCl2 and NaOH solutions with expansive soil developed strong lime-modification and soil-lime pozzolanic reactions. The lime-modification reactions together with the poorly de- veloped cementation products controlled the swelling potential, reduced the plasticity index, and increased the unconfined compressive strength of the expansive clay cured for 24 h. Comparatively, both lime-modification reactions and well-developed crystalline cementation products (formed by lime-soil pozzolanic reactions) contributed to the marked increase in the unconfined compressive strength of the ex-pansive soil that was cured for 7–21 days. Results also show that the sequential mixing of expansive soil with CaCl2 solution followed by NaOH solution is more effective than mixing expansive soil with NaOH solution followed by CaCl2 solution. DOI: 10.1061/(ASCE)MT .1943-5533.0000483. © 2012 American Society of Civil Engineers.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10 degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four post Lest rig. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We investigate methods to explore the CP nature of the t (t) over barh coupling at the LHC, focusing on associated production of the Higgs boson with a t (t) over bar pair. We first discuss the constraints implied by low-energy observables and by the Higgs-rate information from available LHC data, emphasizing that they cannot provide conclusive evidence on the nature of this coupling. We then investigate kinematic observables that could probe the t (t) over barh coupling directly, in particular, quantities that can be constructed out of just laboratory-frame kinematics. We define one such observable by exploiting the fact that t (t) over bar spin correlations do also carry information about the CP nature of the t (t) over barh coupling. Finally, we introduce a CP-odd quantity and a related asymmetry, able to probe CP violation in the t (t) over barh coupling and likewise, constructed out of laboratory-frame momenta only.
Resumo:
Mycobacterium tuberculosis has the ability to persist within the host in a dormant stage. One important condition believed to contribute to dormancy is reduced access to oxygen known as hypoxia. However, the response of M. tuberculosis to such hypoxia condition is not fully characterized. Virtually all dormant models against tuberculosis tested in animals used laboratory strain H37Rv or Erdman strain. But major outbreaks of tuberculosis (TB) occur with the strains that have widely different genotypes and phenotypes compared to H37Rv. In this study, we used a custom oligonucleotide microarray to determine the overall transcriptional response of laboratory strain (H37Rv) and most prevalent clinical strains (S7 and S10) of M. tuberculosis from South India to hypoxia. Analysis of microarray results revealed that a total of 1161 genes were differentially regulated (>= 1.5 fold change) in H37Rv, among them 659 genes upregulated and 502 genes down regulated. Microarray data of clinical isolates showed that a total of 790 genes were differentially regulated in S7 among which 453 genes were upregulated and 337 down regulated. Interestingly, numerous genes were also differentially regulated in S10 (total 2805 genes) of which 1463 genes upregulated and 1342 genes down regulated during reduced oxygen condition (Wayne's model). One hundred and thirty-four genes were found common and upregulated among all three strains (H37Rv, S7, and S10) and can be targeted for drug/vaccine development against TB. (C) 2015 Published by Elsevier B.V.
Resumo:
In the recent past, many studies have been carried out on the determination of coefficient of consolidation (c(v)) from the time (t)-deformation (d) data obtained from conventional consolidation tests. Several researchers have also proposed different curve fitting procedures for determining cv from the t-d data. It is anticipated that the cv values obtained from the t-d data may be influenced by initial and secondary compressions. Nevertheless, the pore water pressure data measured during the consolidation process will be independent of initial and secondary compressions. In this study, the conventional Asaoka (1978) method is extended to evaluate cv and end-of-primary (EOP) consolidation from the pore water pressure data measured from laboratory experiments. Laboratory experiments were carried out on the modified one-dimensional consolidation apparatus on different remoulded clay samples measuring pore water pressure during the consolidation process. The cv and EOP computed from the proposed approach have been compared with the results of the t-d data and found to be in good agreement.
Some Key Technics of Drop Tower Experiment Device of National Microgravity Laboratory (China) (NMLC)
Resumo:
Drop tower is an important ground based facility for microgravity science experiment. The technical performances of the drop tower NMLC are advanced compared with similar facilities in the US, Germany and Japan. The main components such as drop capsule, deceleration devices, release mechanism present its advantages and creativities.
Resumo:
Any waterway with one end closed and the other open is generally called a blind channel. The main flow tends to expand, separate, and cause circulation at the mouth of blind channels. The main flow continuously transfers momentum and sediment into the circulation region through the turbulent mixing region (TMR) between them, thus leading to a large amount of sediment deposition in the blind channels. This paper experimentally investigated the properties of the water flow and sediment diffusion in TMR, demonstrating that both water flow and sediment motion in TMR approximately coincide with a similar structure as in the free mixing layer induced by a jet. The similarity functions of flow velocity and sediment concentration are then assumed, based on observation, and the resulting calculation of these functions is substantially facilitated. For the kind of low velocity flow system of blind channels with a finite width, a simple formula for the sediment deposition rate in blind channels is established by analyzing the gradient of crosswise velocity and sediment concentration in TMR.
Resumo:
It has been reported([1]) that when a loosely packed column of saturated sand in a vertical cylindrical container is shock loaded axially by dropping to the floor, large horizontal cracks initiate, grow and eventually fade away in the sand as it settles under gravity. This paper shows that a similar phenomenon can also be observed when shock loading is replaced by forcing water to percolate upward through the sand column. It is believed that our result sheds further light on the physics of formation of these cracks.
Resumo:
As part of a study of the wear of candidate heat exchanger tube materials for use in fluidized bed combustors, two similar laboratory-scale rigs have been built and characterized. Specimens of selected alloys are carried on counter-rotating rotors immersed in a fluidized bed, and are exposed to particle impact velocities of up to approximately 3 ms-1 at temperatures up to 1000°C. The performance of this design of apparatus has been investigated in detail. The effects of several experimental variables have been studied, including angle of particle impact, specimen speed, position of the rotor within the fluidized bed, duration of exposure, bed material particle size, degradation of the bed material, degree of fluidization of the bed, and size of specimen. In many cases the results obtained with steel specimens at elevated temperatures are similar to those observed with polymeric specimens at low temperatures.