972 resultados para iterated local search
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
This work applies a hybrid approach in solving the university curriculum-based course timetabling problem as presented as part of the 2nd International Timetabling Competition 2007 (ITC2007). The core of the hybrid approach is based on an artificial bee colony algorithm. Past methods have applied artificial bee colony algorithms to university timetabling problems with high degrees of success. Nevertheless, there exist inefficiencies in the associated search abilities in term of exploration and exploitation. To improve the search abilities, this work introduces a hybrid approach entitled nelder-mead great deluge artificial bee colony algorithm (NMGD-ABC) where it combined additional positive elements of particle swarm optimization and great deluge algorithm. In addition, nelder-mead local search is incorporated into the great deluge algorithm to further enhance the performance of the resulting method. The proposed method is tested on curriculum-based course timetabling as presented in the ITC2007. Experimental results reveal that the proposed method is capable of producing competitive results as compared with the other approaches described in literature
Resumo:
In the past years, we could observe a significant amount of new robotic systems in science, industry, and everyday life. To reduce the complexity of these systems, the industry constructs robots that are designated for the execution of a specific task such as vacuum cleaning, autonomous driving, observation, or transportation operations. As a result, such robotic systems need to combine their capabilities to accomplish complex tasks that exceed the abilities of individual robots. However, to achieve emergent cooperative behavior, multi-robot systems require a decision process that copes with the communication challenges of the application domain. This work investigates a distributed multi-robot decision process, which addresses unreliable and transient communication. This process composed by five steps, which we embedded into the ALICA multi-agent coordination language guided by the PROViDE negotiation middleware. The first step encompasses the specification of the decision problem, which is an integral part of the ALICA implementation. In our decision process, we describe multi-robot problems by continuous nonlinear constraint satisfaction problems. The second step addresses the calculation of solution proposals for this problem specification. Here, we propose an efficient solution algorithm that integrates incomplete local search and interval propagation techniques into a satisfiability solver, which forms a satisfiability modulo theories (SMT) solver. In the third decision step, the PROViDE middleware replicates the solution proposals among the robots. This replication process is parameterized with a distribution method, which determines the consistency properties of the proposals. In a fourth step, we investigate the conflict resolution. Therefore, an acceptance method ensures that each robot supports one of the replicated proposals. As we integrated the conflict resolution into the replication process, a sound selection of the distribution and acceptance methods leads to an eventual convergence of the robot proposals. In order to avoid the execution of conflicting proposals, the last step comprises a decision method, which selects a proposal for implementation in case the conflict resolution fails. The evaluation of our work shows that the usage of incomplete solution techniques of the constraint satisfaction solver outperforms the runtime of other state-of-the-art approaches for many typical robotic problems. We further show by experimental setups and practical application in the RoboCup environment that our decision process is suitable for making quick decisions in the presence of packet loss and delay. Moreover, PROViDE requires less memory and bandwidth compared to other state-of-the-art middleware approaches.
Resumo:
The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.
Resumo:
The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.
Resumo:
The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model - simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.
Resumo:
The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.
Resumo:
The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model - simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.
Resumo:
International audience
Resumo:
Efficient hill climbers have been recently proposed for single- and multi-objective pseudo-Boolean optimization problems. For $k$-bounded pseudo-Boolean functions where each variable appears in at most a constant number of subfunctions, it has been theoretically proven that the neighborhood of a solution can be explored in constant time. These hill climbers, combined with a high-level exploration strategy, have shown to improve state of the art methods in experimental studies and open the door to the so-called Gray Box Optimization, where part, but not all, of the details of the objective functions are used to better explore the search space. One important limitation of all the previous proposals is that they can only be applied to unconstrained pseudo-Boolean optimization problems. In this work, we address the constrained case for multi-objective $k$-bounded pseudo-Boolean optimization problems. We find that adding constraints to the pseudo-Boolean problem has a linear computational cost in the hill climber.
Resumo:
Declarative techniques such as Constraint Programming can be very effective in modeling and assisting management decisions. We present a method for managing university classrooms which extends the previous design of a Constraint-Informed Information System to generate the timetables while dealing with spatial resource optimization issues. We seek to maximize space utilization along two dimensions: classroom use and occupancy rates. While we want to maximize the room use rate, we still need to satisfy the soft constraints which model students’ and lecturers’ preferences. We present a constraint logic programming-based local search method which relies on an evaluation function that combines room utilization and timetable soft preferences. Based on this, we developed a tool which we applied to the improvement of classroom allocation in a University. Comparing the results to the current timetables obtained without optimizing space utilization, the initial versions of our tool manages to reach a 30% improvement in space utilization, while preserving the quality of the timetable, both for students and lecturers.
Resumo:
Il seguente elaborato propone un modello innovativo per la gestione della logistica distributiva nell’ultimo miglio, congiungendo l’attività di crowd-shipping con la presenza di Autonomous Vehicles, per il trasporto di prodotti all’interno della città. Il crowd-shipping utilizza conducenti occasionali, i quali deviano il loro tragitto in cambio di una ricompensa per il completamento dell’attività. Dall’altro lato, gli Autonomous Vehicles sono veicoli elettrici a guida autonoma, in grado di trasportare un numero limitato di pacchi e dotati di un sistema di sicurezza avanzato per garantire la fiducia nel trasporto. In primo luogo, nel seguente elaborato verrà mostrato il modello di ottimizzazione che congiunge i due attori principali in un unico ambiente, dove sono presenti un numero determinato di prodotti da muovere. Successivamente, poiché il problema di ottimizzazione è molto complesso e il numero di istanze valutabili è molto basso, verranno presentate due soluzioni differenti. La prima riguarda la metaeuristica chiamata Ant System, che cerca di avvicinarsi alle soluzioni ottime del precedente modello, mentre la seconda riguarda l’utilizzo di operatori di Local Search, i quali permettono di valutare soluzioni per istanze molto più grandi rispetto alla metaeuristica. Infine, i due modelli euristici verranno utilizzati per analizzare uno scenario che cerca di riprodurre una situazione reale. Tale scenario tenta di allocare strategicamente le risorse presenti e permette di dimostrare che gli Autonomous Vehicles riescono a supportare gli Occasional Drivers anche quando il numero di prodotti trasportabili è elevato. Inoltre, le due entità proposte riescono a soddisfare la domanda, garantendo un servizio che nel futuro potrebbe sostituire il tradizionale sistema di logistica distributiva last mile.
Resumo:
Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.
Resumo:
CODEX SEARCH es un motor de recuperación de información especializado en derecho de extranjería que está basado en herramientas y conocimiento lingüísticos. Un motor o Sistema de Recuperación de Información (SRI) es un software capaz de localizar información en grandes colecciones documentales (entorno no trivial) en formato electrónico. Mediante un estudio previo se ha detectado que la extranjería es un ámbito discursivo en el que resulta difícil expresar la necesidad de información en términos de una consulta formal, objeto de los sistemas de recuperación actuales. Por lo tanto, para desarrollar un SRI eficiente en el dominio indicado no basta con emplear un modelo tradicional de RI, es decir, comparar los términos de la pregunta con los de la respuesta, básicamente porque no expresan implicaciones y porque no tiene que haber necesariamente una relación 1 a 1. En este sentido, la solución lingüística propuesta se basa en incorporar el conocimiento del especialista mediante la integración en el sistema de una librería de casos. Los casos son ejemplos de procedimientos aplicados por expertos a la solución de problemas que han ocurrido en la realidad y que han terminado en éxito o fracaso. Los resultados obtenidos en esta primera fase son muy alentadores pero es necesario continuar la investigación en este campo para mejorar el rendimiento del prototipo al que se puede acceder desde &http://161.116.36.139/~codex/&.