190 resultados para isospin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (Im-IQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of in-medium nucleon-nucleon cross section on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-40 and Ca-60 + Ca-40; Sn-112 + Sn-112 and Sn-124 + Sn-124 within the isospin dependent quantum molecular dynamics. The calculated result shows that the influence of the in-medium nucleon-nucleon cross section on the isoscaling parameter a is mainly determined by the corresponding number of collisions, both for isospin dependent and isospin independent parameterizations. The mechanisms behind the effects of the in-medium nucleon-nucleon cross sections on the alpha are investigated in more details.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对两对重离子中心碰撞系统40C+40Ca 和60Ca+40Ca以及112Sn+112Sn和124Sn+124Sn反应中就同位素标度参数α对于核子-核子碰撞截面的同位旋效应进行了研究.计算结果表明α对同位旋相关核子-核子碰撞截面σmedNN

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influences of the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependant interaction (MDI) on the isotope scaling are investigated by using the isospin-dependent quantum molecular dynamics model (IQMD). The results show that both the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction affect the isoscaling parameters appreciably and independently. The influence caused by the isospin dependence of two-body collision is relatively larger than that from the MDI in the mean field. Aiming at exploring the implication of isoscaling behaviour, which the statistical equilibrium in the reaction is reached, the statistical properties in the mass distribution and the kinetic energy distribution of the fragments simulated by IQMD are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proton and neutron S-1(0), pairing gaps and their isospin dependence in isospin asymmetric nuclear matter have been studied by the isospin dependent Brueckner-Hartree-Fock approach and the BCS theory. We have focused on investigating and discussing the effect of three-body force. The calculated results indicate that as the isospin asymmetry increases, the density range of the S-1(0) neutron superfluidity is narrowed slightly and the maximum value of the neutron pairing gap increases 9 while the density domain for the proton superfluidity enlarges rapidly and the peak value of the proton gap decreases remarkably. The three-body force turns out to affect only weakly the neutron S-1(0) superfluidity and its isospin dependence, i. e., it leads to a small reduction of the neutron S-1(0) paring gap. However, the three-body force not only reduces largely the strength of the proton S-1(0) gaps at high densities in highly asymmetric nuclear matter but also suppresses strongly the density domain for the proton S-1(0) superfluidity phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medium effect of nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two central nuclear reactions Ca-40+Ca-40, Ca-60+Ca-60. within isospin-dependent quantum molecular dynamics at beam energies from 40 to 50 MeV/nucleon. It is found that there is the very obvious medium effects of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) on the isoscaling parameters a. In this case the isoscaling parameter a is a possible probe of the medium effect of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) in the heavy ion collisions. The mechanism of the above-mentioned properties is studied and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduced velocity correlation functions of the Intermediate Mass Fragments (IMFs) were measured in the reactions of Ar-36+ Sn-112,Sn-124 at 35MeV/u. The anti-correlation at small reduced velocities is more pronounced in Ar-36+ Sn-124 system than that in Ar-36+ Sn-112 system. The difference of the correlation functions between the two reactions is mainly contributed by the particle pairs with high momenta. A three-body Coulomb repulsive trajectory code (MENEKA) is employed to calculate the emission time scale of IMFs for-the both systems. The time scale is 150fm/c in the Ar-36+ Sn-112 system and 120fm/c in the Ar-36+ Sn-124 system, respectively. A calculation based on an Isospin dependence Quantum Molecular Dynamics code (IQMD) reveals that the emission time spectrum of IMFs is shifted slightly leftwards in Ar-36+ Sn-124 compared with that in the Ar-16+ Sn-112 system, indicating a shorter emission time scale. Correspondingly, the central density of the hot nuclei decreases faster in Ar-36+ Sn-124 than in Ar-36+ Sn-112

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assuming Theta(+) interacts with nucleon or Theta(+) by exchanging isoscalar mesons sigma and omega, the equation of state of {p, n, Theta(+)} and possible metastable state are studied in the framwork of the density dependent relativistic hadron field theory(DDRH). The ratio of the proton isospin to the neutron isospin with different baryon densities and the effect of the Theta(+) component on the binding energy per baryon of the system are also discussed. It is shown that when the binding energy per baryon of the system takes the maximal value, Theta(+) might be bound in the nuclear matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The double neutron-proton differential transverse flow taken from two reaction systems using different isotopes of the same element is studied at incident beam energies of 400 and 800 MeV/nucleon within the framework of an isospin- and momentum-dependent hadronic transport model IBUU04. The double differential flow is found to retain about the same sensitivity to the density dependence of the nuclear symmetry energy as the single differential flow in the more neutron-rich reaction. Because the double differential flow reduces significantly both the systematic errors and the influence of the Coulomb force, it is thus more effective probe for the high-density behavior of the nuclear symmetry energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, we investigated the neutron-proton differential flow in the (132) Sn + (124) Sn mid-central collisions at beam energies of 400MeV/A, 600MeV/A and 800MeV/A by adopting two different symmetry energies. It was found that the neutron-proton differential flow as a function of rapidity is very sensitive to the density dependence of symmetry energy, especially at incident energies around 400MeV/A

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the IBUU transport model, flipping of the symmetry potential in heavy-ion collisions is studied. It is found that there exist flipping of the symmetry potential in the isospin fractionation, the single neutron to proton ratio, the double neutron to proton ratio and the neutron-proton differential flow from lower to higher incident energies. The flipping of the symmetry potential results from the change of the relative magnitude of the hard and soft symmetry energies at lower and higher densities. Future observations of the flipped symmetry potential in experiment will help the study of the density-dependent symmetry energy.