910 resultados para irrealis objects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under investigation by emission electron microscopy, the shape and size of three-dimensional objects are distorted because of the appearance of a characteristic potential relief and a possible contact potential difference between the particles and the substrate. An estimation of these effects for spherical particles is made. It is shown that the apparent size of particles observed in an emission electron microscope (EEM) could be increased as well as decreased depending on the relation between the work functions of the particle and the substrate. The corresponding formulae are given and several possibilities are shown which permit us to determine from the EEM image the real size of particles and their work function relative to the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach towards shape description, based on prototype modification and generalized cylinders, has been developed and applied to the object domains pottery and polyhedra: (1) A program describes and identifies pottery from vase outlines entered as lists of points. The descriptions have been modeled after descriptions by archeologists, with the result that identifications made by the program are remarkably consisten with those of the archeologists. It has been possible to quantify their shape descriptors, which are everyday terms in our language applied to many sorts of objects besides pottery, so that the resulting descriptions seem very natural. (2) New parsing strategies for polyhedra overcome some limitations of previous work. A special feature is that the processes of parsing and identification are carried out simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are presented (1) to partition or decompose a visual scene into the bodies forming it; (2) to position these bodies in three-dimensional space, by combining two scenes that make a stereoscopic pair; (3) to find the regions or zones of a visual scene that belong to its background; (4) to carry out the isolation of objects in (1) when the input has inaccuracies. Running computer programs implement the methods, and many examples illustrate their behavior. The input is a two-dimensional line-drawing of the scene, assumed to contain three-dimensional bodies possessing flat faces (polyhedra); some of them may be partially occluded. Suggestions are made for extending the work to curved objects. Some comparisons are made with human visual perception. The main conclusion is that it is possible to separate a picture or scene into the constituent objects exclusively on the basis of monocular geometric properties (on the basis of pure form); in fact, successful methods are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Zhang and M.H. Lee, 'From Perception to Cognition of Objects', Proceedings of Towards Autonomous Robotic Systems, (TAROS-06), pp 262-67, University of Guildford, Surrey, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a tool called Gismo (Generator of Internet Streaming Media Objects and workloads). Gismo enables the specification of a number of streaming media access characteristics, including object popularity, temporal correlation of request, seasonal access patterns, user session durations, user interactivity times, and variable bit-rate (VBR) self-similarity and marginal distributions. The embodiment of these characteristics in Gismo enables the generation of realistic and scalable request streams for use in the benchmarking and comparative evaluation of Internet streaming media delivery techniques. To demonstrate the usefulness of Gismo, we present a case study that shows the importance of various workload characteristics in determining the effectiveness of proxy caching and server patching techniques in reducing bandwidth requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial occlusions are commonplace in a variety of real world computer vision applications: surveillance, intelligent environments, assistive robotics, autonomous navigation, etc. While occlusion handling methods have been proposed, most methods tend to break down when confronted with numerous occluders in a scene. In this paper, a layered image-plane representation for tracking people through substantial occlusions is proposed. An image-plane representation of motion around an object is associated with a pre-computed graphical model, which can be instantiated efficiently during online tracking. A global state and observation space is obtained by linking transitions between layers. A Reversible Jump Markov Chain Monte Carlo approach is used to infer the number of people and track them online. The method outperforms two state-of-the-art methods for tracking over extended occlusions, given videos of a parking lot with numerous vehicles and a laboratory with many desks and workstations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much work on the performance of Web proxy caching has focused on high-level metrics such as hit rate and byte hit rate, but has ignored all the information related to the cachability of Web objects. Uncachable objects include those fetched by dynamic requests, objects with uncachable HTTP status code, objects with the uncachable HTTP header, objects with an HTTP 1.0 cookie, and objects without a last-modified header. Although some researchers filter the Web traces before they use them for analysis or simulation,many do not have a comprehensive understanding of the cachability of Web objects. In this paper we evaluate all the reasons that a Web object might be uncachable. We use traces from NLANR. Since these traces do not contain HTTP header information, we replay them using request generator to get the response header information. We find that between 15% and 40% of Web objects in our traces can not be cached by a Web proxy server. We use a LRU simulator to show the performance gap when the cachability is either considered or not. We show the characteristics of the cachable data set and find that all its characteristics are fairly similar to that of total data set. Finally, we present some additional results for the cachable and total data set: (1) The main reasons for uncachability are: dynamic requests, responses without last-modified header, responses with HTTP "302 Moved Temporarily" status code, and responses with a HTTP/1.0 cookie. (2) The cachability of Web objects can not be ignored in simulation because uncachable objects comprise a huge percentage of the total trace. Simulations without cachability consideration will be misleading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of 3-D objects from sequences of their 2-D views is modeled by a family of self-organizing neural architectures, called VIEWNET, that use View Information Encoded With NETworks. VIEWNET incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a supervised incremental learning system that classifies the preprocessed representations into 2-D view categories whose outputs arc combined into 3-D invariant object categories, and a working memory that makes a 3-D object prediction by accumulating evidence from 3-D object category nodes as multiple 2-D views are experienced. The simplest VIEWNET achieves high recognition scores without the need to explicitly code the temporal order of 2-D views in working memory. Working memories are also discussed that save memory resources by implicitly coding temporal order in terms of the relative activity of 2-D view category nodes, rather than as explicit 2-D view transitions. Variants of the VIEWNET architecture may also be used for scene understanding by using a preprocessor and classifier that can determine both What objects are in a scene and Where they are located. The present VIEWNET preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, rotation, and dilation by use of a log-polar transform. The invariant spectra undergo Gaussian coarse coding to further reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the classifier, a supervised learning system based on the fuzzy ARTMAP algorithm. Fuzzy ARTMAP learns 2-D view categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive error. Evidence from sequence of 2-D view categories converges at 3-D object nodes that generate a response invariant under changes of 2-D view. These 3-D object nodes input to a working memory that accumulates evidence over time to improve object recognition. ln the simplest working memory, each occurrence (nonoccurrence) of a 2-D view category increases (decreases) the corresponding node's activity in working memory. The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean image using slow and fast learning. Slow learning at the fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the selected 2-D view category. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of l28x128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view and of up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with those of cells in monkey inferotemporal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an estimation-theoretic approach to the inference of an incoherent 3D scattering density from 2D scattered speckle field measurements. The object density is derived from the covariance of the speckle field. The inference is performed by a constrained optimization technique inspired by compressive sensing theory. Experimental results demonstrate and verify the performance of our estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the regularization theory for improperly posed problems, we discuss object restoration beyond the diffraction limit in the presence of noise. Only the case of one-dimensional coherent objects is considered. We focus attention n the estimation of the error on the restored objects, and we show that, in most realistic cases, it is at best proportional to an inverse power of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of linear relationships is foundational for mathematics teaching and learning. However, students’ abilities connect different representations of linear relationships have proven to be challenging. In response, a computer-based instructional sequence was designed to support students’ understanding of the connections among representations. In this paper we report on the affordances of this dynamic mode of representation specifically for students with learning disabilities. We outline four results identified by teachers as they implemented the online lessons.