966 resultados para invertebrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene number can be considered a pragmatic measure of biological complexity, but reliable data is scarce. Estimates for vertebrates are 50-100,000 genes per haploid genome, whereas invertebrate estimates fall below 25,000. We wished to test the hypothesis that the origin of vertebrates coincided with extensive gene creation. A prediction is that gene number will differ sharply between invertebrate and vertebrate members of the chordate phylum. A gene number estimation method requiring limited sequence sampling of genomic DNA was developed and validated by using data for Caenorhabditis elegans. Using the method, we estimated that the invertebrate chordate Ciona intestinalis has 15,500 protein-coding genes (±3,700). This number is significantly lower than gene numbers of vertebrate chordates, but similar to those of invertebrates in distantly related phyla. The data indicate that evolution of vertebrates was accompanied by a dramatic increase in protein-coding capacity of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After infection with the digenetic trematode Echinostoma paraensei, hemolymph of the snail Biomphalaria glabrata contains lectins comprised of 65-kDa subunits that precipitate polypeptides secreted by E. paraensei intramolluscan larvae. Comparable activity is lacking in hemolymph of uninfected snails. Three different cDNAs with sequence similarities to peptides derived from the 65-kDa lectins were obtained and unexpectedly found to encode fibrinogen-related proteins (FREPs). These FREPs also contained regions with sequence similarity to Ig superfamily members. B. glabrata has at least five FREP genes, three of which are expressed at increased levels after infection. Elucidation of components of the defense system of B. glabrata is relevant because this snail is an intermediate host for Schistosoma mansoni, the most widely distributed causative agent of human schistosomiasis. These results are novel in suggesting a role for invertebrate FREPs in recognition of parasite-derived molecules and also provide a model for investigating the diversity of molecules functioning in nonself-recognition in an invertebrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the “counterion” is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation—that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile hormones (JH), a sesquiterpenoid group of ligands that regulate developmental transitions in insects, bind to the nuclear receptor ultraspiracle (USP). In fluorescence-based binding assays, USP protein binds JH III and JH III acid with specificity, adopting for each ligand a different final conformational state. JH III treatment of Saccharomyces cerevisiae expressing a LexA-USP fusion protein stabilizes an oligomeric association containing this protein, as detected by formation of a protein–DNA complex, and induces USP-dependent transcription in a reporter assay. We propose that regulation of morphogenetic transitions in invertebrates involves binding of JH or JH-like structures to USP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Catch,” a state where some invertebrate muscles sustain high tension over long periods of time with little energy expenditure (low ATP hydrolysis rate) is similar to the “latch” state of vertebrate smooth muscles. Its induction and release involve Ca2+-dependent phosphatase and cAMP-dependent protein kinase, respectively. Molecular mechanisms for catch remain obscure. Here, we describe a quantitative microscopic in vitro assay reconstituting the catch state with proteins isolated from catch muscles. Thick filaments attached to glass coverslips and pretreated with ≈10−4 M free Ca2+ and soluble muscle proteins bound fluorescently labeled native thin filaments tightly in catch at ≈10−8 M free Ca2+ in the presence of MgATP. At ≈10−4 M free Ca2+, the thin filaments moved at ≈4 μm/s. Addition of cAMP and cAMP-dependent protein kinase at ≈10−8 M free Ca2+ caused their release. Rabbit skeletal muscle F-actin filaments completely reproduced the results obtained with native thin filaments. Binding forces >500 pN/μm between thick and F-actin filaments were measured by glass microneedles, and were sufficient to explain catch tension in vivo. Synthetic filaments of purified myosin and twitchin bound F-actin in catch, showing that other components of native thick filaments such as paramyosin and catchin are not essential. The binding between synthetic thick filaments and F-actin filaments depended on phosphorylation of twitchin but not of myosin. Cosedimentation experiments showed that twitchin did not bind directly to F-actin in catch. These results show that catch is a direct actomyosin interaction regulated by twitchin phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sudden appearance of calcified skeletons among many different invertebrate taxa at the Precambrian-Cambrian transition may have required minor reorganization of preexisting secretory functions. In particular, features of the skeletal organic matrix responsible for regulating crystal growth by inhibition may be derived from mucous epithelial excretions. The latter would have prevented spontaneous calcium carbonate overcrusting of soft tissues exposed to the highly supersaturated Late Proterozoic ocean [Knoll, A. H., Fairchild, I. J. & Swett, K. (1993) Palaios 8, 512-525], a putative function for which we propose the term "anticalcification." We tested this hypothesis by comparing the serological properties of skeletal water-soluble matrices and mucous excretions of three invertebrates--the scleractinian coral Galaxea fascicularis and the bivalve molluscs Mytilus edulis and Mercenaria mercenaria. Crossreactivities recorded between muci and skeletal water-soluble matrices suggest that these different secretory products have a high degree of homology. Furthermore, freshly extracted muci of Mytilus were found to inhibit calcium carbonate precipitation in solution.