907 resultados para interleukin 1 gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens. The SRCR domains are encoded by highly homologous repetitive exons, whose number in humans may vary from 8 to 13 due to genetic polymorphism. Here, we characterized the porcine DMBT1 gene on the mRNA and genomic level. We assembled a 4.5 kb porcine DMBT1 cDNA sequence from RT-PCR amplified seminal vesicle RNA. The porcine DMBT1 cDNA contains an open reading frame of 4050 nt. The transcript gives rise to a putative polypeptide of 1349 amino acids with a calculated mass of 147.9 kDa. Compared to human DMBT1, it contains only four N-terminal SRCR domains. Northern blotting revealed transcripts of approximately 4.7 kb in size in the tissues analyzed. Analysis of ESTs suggested the existence of secreted and transmembrane variants. The porcine DMBT1 gene spans about 54 kb on chromosome 14q28-q29. In contrast to the characterized cDNA, the genomic BAC clone only contained 3 exons coding for N-terminal SRCR domains. In different mammalian DMBT1 orthologs large interspecific differences in the number of SRCR exons and utilization of the transmembrane exon exist. Our data suggest that the porcine DMBT1 gene may share with the human DMBT1 gene additional intraspecific variations in the number of SRCR-coding exons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive renal tubular disorder characterized by renal magnesium wasting, hypercalciuria, advanced nephrocalcinosis and progressive renal failure. Mutations in the paracellin-1 (CLDN16) gene have been defined as the underlying genetic defect. The tubular disorders and progression in renal failure are usually resistant to magnesium substitution and hydrochlorothiazide therapy, but hypomagnesemia may improve with advanced renal insufficiency. We present a patient with a homozygous truncating CLDN16 gene mutation (W237X) who had early onset of renal insufficiency despite early diagnosis at 2 months. He also had additional abnormalities including horseshoe kidney, neonatal teeth, atypical face, cardiac abnormalities including coarctation of the aorta associated with atrial and ventricular septal defects, umbilical hernia and hypertrichosis. To the best of our knowledge, this is the youngest case diagnosed as familial hypomagnesemia with hypercalciuria and nephrocalcinosis and the first case having such additional congenital abnormalities independent of the disease itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Autosomal-dominant isolated GH deficiency (IGHD) is a rare disorder that is commonly believed to be due to heterozygous mutations in the GH-1 gene (GH-1). These mutations cause the production of a protein that affects the release of the product of the normal allele. Rarely, heterozygous mutations in the gene encoding for HESX-1 gene (HESX-1) may cause autosomal-dominant IGHD, with penetrance that has been shown to be variable in both humans and mice. SUBJECTS AND METHODS: We have sequenced the whole GH-1 in the index cases of 30 families with autosomal-dominant IGHD. In all the families other possible causes of GH deficiency and other pituitary hormones deficits were excluded. We here describe the clinical, biochemical and radiological picture of the families without GH-1 mutations. In these families, we also sequenced the HESX-1. RESULTS: The index cases of the five families with autosomal-dominant IGHD had normal GH-1, including the intronic sequences. They had no HESX-1 mutations. CONCLUSION: This study shows that GH-1 mutations are absent in 5/30 (16.6%) of the families with autosomal-dominant IGHD and raises the possibility that mutations in other gene(s) may be involved in IGHD with this mode of transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-1 beta is a potent mediator of the acute-phase response. However, the effects of interleukin-1 beta administration on the topic in vivo production of acute-phase proteins and albumin are so far not well understood. Overnight fasted rats were subcutaneously injected with 0.2 mL 0.9% NaCl (control group) or 6.25 micrograms recombinant human interleukin-1 beta, and rectal temperature was measured at intervals up to 48 h. Livers were perfused-fixed in vivo prior to injection (base-line), and at 9, 24, and 48 h following the interleukin-1 beta injection. Fibrinogen, orosomucoid (alpha 1-acid glycoprotein) and albumin were immunostained using a streptavidin-biotin-immunoperoxidase technique. Rectal temperature peaked 5 h after the single interleukin-1 beta injection, and fell gradually to base-line values by 24 h. Prior to injection only a few hepatocytes, randomly scattered throughout the liver lobule, stained positive for fibrinogen and orosomucoid. In contrast, all hepatocytes stained uniformly positive for fibrinogen and orosomucoid 9 h after interleukin-1 beta injection, whereas at 24 h a predominant centrilobular staining pattern occurred. Due to fasting, albumin positive hepatocytes were already reduced at base-line in both groups. Interleukin-1 beta induced a further significant loss of albumin positive cells in the periportal zone (35 +/- 21%) at 9 h when compared with controls (58 +/- 11%, p = 0.037). In conclusion, subcutaneous interleukin-1 beta (probably by stimulation of interleukin-6) strongly induces fibrinogen and orosomucoid expression in rat liver, and suppresses immunohistochemically stainable albumin in a heterogenous way, mainly in the periportal zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Thyroid transcription factor 1 (TITF1/NKX2.1) is expressed in the thyroid, lung, ventral forebrain, and pituitary. In the lung, TITF1/NKX2.1 activates the expression of genes critical for lung development and function. Titf/Nkx2.1(-/-) mice have pituitary and thyroid aplasia but also impairment of pulmonary branching. Humans with heterozygous TITF1/NKX2.1 mutations present with various combinations of primary hypothyroidism, respiratory distress, and neurological disorders. OBJECTIVE: The objective of the study was to report clinical and molecular studies of the first patient with lethal neonatal respiratory distress from a novel heterozygous TITF1/NKX2.1 mutation. Participant: This girl, the first child of healthy nonconsanguineous French-Canadian parents, was born at 41 wk. Birth weight was 3,460 g and Apgar scores were normal. Soon after birth, she developed acute respiratory failure with pulmonary hypertension. At neonatal screening on the second day of life, TSH was 31 mU/liter (N <15) and total T(4) 245 nmol/liter (N = 120-350). Despite mechanical ventilation, thyroxine, surfactant, and pulmonary vasodilators, the patient died on the 40th day. RESULTS: Histopathology revealed pulmonary tissue with low alveolar counts. The thyroid was normal. Sequencing of the patient's lymphocyte DNA revealed a novel heterozygous TITF1/NKX2.1 mutation (I207F). This mutation was not found in either parent. In vitro, the mutant TITF-1 had reduced DNA binding and transactivation capacity. CONCLUSION: This is the first reported case of a heterozygous TITF1/NKX2.1 mutation leading to neonatal death from respiratory failure. The association of severe unexplained respiratory distress in a term neonate with mild primary hypothyroidism is the clue that led to the diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell differentiation are associated with activation of cell lineage-specific genes. The $LpS{\it 1}\beta$ gene of Lytechinus pictus is activated at the late cleavage stage. $LpS{\it 1}\beta$ transcripts accumulate exclusively in aboral ectoderm lineages. Previous studies demonstrated two G-string DNA-elements, proximal and distal G-strings, which bind to an ectoderm-enriched nuclear factor. In order to define the cis-elements which control positive expression of the $LpS{\it 1}\beta$ gene, the regulatory region from $-$108 to +17 bp of the $LpS{\it 1}\beta$ gene promoter was characterized. The ectoderm G-string factor binds to a G/C-rich region larger than the G-string itself and the binding of the G-string factor requires sequences immediately downstream from the G-string. These downstream sequences are essential for full promoter activity. In addition, only 108 bp of $LpS{\it 1}\beta\ 5\sp\prime$ flanking DNA drives $LpS{\it 1}\beta$ gene expression in aboral ectoderm/mesenchyme cells. Therefore, for positive control of $LpS{\it 1}\beta$ gene expression, two regions of 5$\sp\prime$ flanking DNA are required: region I from base pairs $-$762 to $-$511, and region II, which includes the G/C-rich element, from base pairs $-$108 to $-$61. A mesenchyme cell repressor element is located within region I.^ DNA-binding proteins play key roles in determination of cell differentiation. The zinc finger domain is a DNA-binding domain present in many transcription factors. Based on homologies in zinc fingers, a zinc finger-encoding gene, SpKrox-1, was cloned from S. purpuratus. The putative SpKrox-1 protein has all structural characteristics of a transcription factor: four zinc fingers for DNA binding; acidic domain for transactivation; basic domain for nuclear targeting; and leucine zipper for dimerization. SpKrox-1 RNA transcripts showed a transient expression pattern which correlates largely with early embryonic development. The spatial expression of SpKrox-1 mRNA was distributed throughout the gastrula and larva ectodermal wall. However, SpKrox-1 was not expressed in pigment cells. The SpKrox-1 gene is thus a marker of a subset of SMCs or ectoderm cells. The structural features, and the transient temporal and restricted spatial expression patterns suggest that SpKrox-1 plays a role in a specific developmental event. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumor 1 gene (WT1) encodes a zinc-finger transcription factor and is expressed in urogenital, hematopoietic and other tissues. It is expressed in a temporal and spatial manner in both embryonic and adult stages. To obtain a better understanding of the biological function of WT1, we studied two aspects of WT1 regulation: one is the identification of tissue-specific cis-regulatory elements that regulate its expression, the other is the downstream genes which are modulated by WT1.^ My studies indicate that in addition to the promoter, other regulatory elements are required for the tissue specific expression of this gene. A 259-bp hematopoietic specific enhancer in intron 3 of the WT1 gene increased the transcriptional activity of the WT1 promoter by 8- to 10-fold in K562 and HL60 cells. Sequence analysis revealed both GATA and c-Myb motifs in the enhancer fragment. Mutation of the GATA motif decreased the enhancer activity by 60% in K562 cells. Electrophoretic mobility shift assays showed that both GATA-1 and GATA-2 proteins in K562 nuclear extracts bind to this motif. Cotransfection of the enhancer containing reporter construct with a GATA-1 or GATA-2 expression vector showed that both GATA-1 and GATA-2 transactivated this enhancer, increasing the CAT reporter activity 10-15 fold and 5-fold respectively. Similar analysis of the c-Myb motif by cotransfection with the enhancer CAT reporter construct and a c-Myb expression vector showed that c-Myb transactivated the enhancer by 5-fold. A DNase I-hypersensitive site has been identified in the 258 bp enhancer region. These data suggest that GATA-1 and c-Myb are responsible for the activity of this enhancer in hematopoietic cells and may bind to the enhancer in vivo. In the process of searching for cis-regulatory elements in transgenic mice, we have identified a 1.0 kb fragment that is 50 kb downstream from the promoter and is required for the central nervous system expression of WT1.^ In the search for downstream target genes of WT1, we noted that the proto-oncogene N-myc is coexpressed with the tumor suppressor gene WT1 in the developing kidney and is overexpressed in many Wilms' tumors. Sequence analysis revealed eleven consensus WT1 binding sites located in the 1 kb mouse N-myc promoter. We further showed that the N-myc promoter was down-regulated by WT1 in transient transfection assays. Electrophoretic mobility shift assays showed that oligonucleotides containing the WT1 motifs could bind WT1 protein. Furthermore, a Denys-Drash syndrome mutant of WT1, R394W, that has a mutation in the DNA binding domain, failed to repress the N-myc promoter. This suggests that the repression of the N-myc promoter is mediated by DNA binding of WT1. This finding helps to elucidate the relationship of WT1 and N-myc in tumorigenesis and renal development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-1β (IL-1β) is a key cytokine involved in inflammatory illnesses including rare hereditary diseases and common chronic inflammatory conditions as gout, rheumatoid arthritis, and type 2 diabetes mellitus, suggesting reduction of IL-1β activity as new treatment strategy. The objective of our study was to assess safety, antibody response, and preliminary efficacy of a novel vaccine against IL-1β. The vaccine hIL1bQb consisting of full-length, recombinant IL-1β coupled to virus-like particles was tested in a preclinical and clinical, randomized, placebo-controlled, double-blind study in patients with type 2 diabetes. The preclinical simian study showed prompt induction of IL-1β-specific antibodies upon vaccination, while neutralizing antibodies appeared with delay. In the clinical study with 48 type 2 diabetic patients, neutralizing IL-1β-specific antibody responses were detectable after six injections with doses of 900 µg. The development of neutralizing antibodies was associated with higher number of study drug injections, lower baseline body mass index, improvement of glycemia, and C-reactive protein (CRP). The vaccine hIL1bQb was safe and well-tolerated with no differences regarding adverse events between patients receiving hIL1bQb compared to placebo. This is the first description of a vaccine against IL-1β and represents a new treatment option for IL-1β-dependent diseases such as type 2 diabetes mellitus (ClinicalTrials.gov NCT00924105).Molecular Therapy (2016); doi:10.1038/mt.2015.227.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.