980 resultados para interbranchial lymphoid tissue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many different materials, techniques and methods, including artificial or engineered bone substitutes, have been used to repair various bone defects, the restoration of critical-sized bone defects caused by trauma, surgery or congenital malformation is still a great challenge to orthopedic surgeons. One important fact that has been neglected in the pursuit of resolutions for large bone defect healing is that most physiological bone defect healing needs the periosteum and stripping off the periosteum may result in non-union or non-healed bone defects. Periosteum plays very important roles not only in bone development but also in bone defect healing. The purpose of this project was to construct a functional periosteum in vitro using a single stem cell source and then test its ability to aid the repair of critical-sized bone defect in animal models. This project was designed with three separate but closely-linked parts which in the end led to four independent papers. The first part of this study investigated the structural and cellular features in periostea from diaphyseal and metaphyseal bone surfaces in rats of different ages or with osteoporosis. Histological and immunohistological methods were used in this part of the study. Results revealed that the structure and cell populations in periosteum are both age-related and site-specific. The diaphyseal periosteum showed age-related degeneration, whereas the metaphyseal periosteum is more destructive in older aged rats. The periosteum from osteoporotic bones differs from normal bones both in terms of structure and cell populations. This is especially evident in the cambial layer of the metaphyseal area. Bone resorption appears to be more active in the periosteum from osteoporotic bones, whereas bone formation activity is comparable between the osteoporotic and normal bone. The dysregulation of bone resorption and formation in the periosteum may also be the effect of the interaction between various neural pathways and the cell populations residing within it. One of the most important aspects in periosteum engineering is how to introduce new blood vessels into the engineered periosteum to help form vascularized bone tissues in bone defect areas. The second part of this study was designed to investigate the possibility of differentiating bone marrow stromal cells (BMSCs) into the endothelial cells and using them to construct vascularized periosteum. The endothelial cell differentiation of BMSCs was induced in pro-angiogenic media under both normoxia and CoCl2 (hypoxia-mimicking agent)-induced hypoxia conditions. The VEGF/PEDF expression pattern, endothelial cell specific marker expression, in vitro and in vivo vascularization ability of BMSCs cultured in different situations were assessed. Results revealed that BMSCs most likely cannot be differentiated into endothelial cells through the application of pro-angiogenic growth factors or by culturing under CoCl2-induced hypoxic conditions. However, they may be involved in angiogenesis as regulators under both normoxia and hypoxia conditions. Two major angiogenesis-related growth factors, VEGF (pro-angiogenic) and PEDF (anti-angiogenic) were found to have altered their expressions in accordance with the extracellular environment. BMSCs treated with the hypoxia-mimicking agent CoCl2 expressed more VEGF and less PEDF and enhanced the vascularization of subcutaneous implants in vivo. Based on the findings of the second part, the CoCl2 pre-treated BMSCs were used to construct periosteum, and the in vivo vascularization and osteogenesis of the constructed periosteum were assessed in the third part of this project. The findings of the third part revealed that BMSCs pre-treated with CoCl2 could enhance both ectopic and orthotopic osteogenesis of BMSCs-derived osteoblasts and vascularization at the early osteogenic stage, and the endothelial cells (HUVECs), which were used as positive control, were only capable of promoting osteogenesis after four-weeks. The subcutaneous area of the mouse is most likely inappropriate for assessing new bone formation on collagen scaffolds. This study demonstrated the potential application of CoCl2 pre-treated BMSCs in the tissue engineering not only for periosteum but also bone or other vascularized tissues. In summary, the structure and cell populations in periosteum are age-related, site-specific and closely linked with bone health status. BMSCs as a stem cell source for periosteum engineering are not endothelial cell progenitors but regulators, and CoCl2-treated BMSCs expressed more VEGF and less PEDF. These CoCl2-treated BMSCs enhanced both vascularization and osteogenesis in constructed periosteum transplanted in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific discoveries, developments in medicine and health issues are the constant focus of media attention and the principles surrounding the creation of so called ‘saviour siblings’ are of no exception. The development in the field of reproductive techniques has provided the ability to genetically analyse embryos created in the laboratory to enable parents to implant selected embryos to create a tissue-matched child who may be able to cure an existing sick child. The research undertaken in this thesis examines the regulatory frameworks overseeing the delivery of assisted reproductive technologies (ART) in Australia and the United Kingdom and considers how those frameworks impact on the accessibility of in vitro fertilisation (IVF) procedures for the creation of ‘saviour siblings’. In some jurisdictions, the accessibility of such techniques is limited by statutory requirements. The limitations and restrictions imposed by the state in relation to the technology are analysed in order to establish whether such restrictions are justified. The analysis is conducted on the basis of a harm framework. The framework seeks to establish whether those affected by the use of the technology (including the child who will be created) are harmed. In order to undertake such evaluation, the concept of harm is considered under the scope of John Stuart Mill’s liberal theory and the Harm Principle is used as a normative tool to judge whether the level of harm that may result, justifies state intervention or restriction with the reproductive decision-making of parents in this context. The harm analysis conducted in this thesis seeks to determine an appropriate regulatory response in relation to the use of pre-implantation tissue-typing for the creation of ‘saviour siblings’. The proposals outlined in the last part of this thesis seek to address the concern that harm may result from the practice of pre-implantation tissue-typing. The current regulatory frameworks in place are also analysed on the basis of the harm framework established in this thesis. The material referred to in this thesis reflects the law and policy in place in Australia and the UK at the time the thesis was submitted for examination (December 2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout history, developments in medicine have aimed to improve patient quality of life, and reduce the trauma associated with surgical treatment. Surgical access to internal organs and bodily structures has been traditionally via large incisions. Endoscopic surgery presents a technique for surgical access via small (1 Omm) incisions by utilising a scope and camera for visualisation of the operative site. Endoscopy presents enormous benefits for patients in terms of lower post operative discomfort, and reduced recovery and hospitalisation time. Since the first gall bladder extraction operation was performed in France in 1987, endoscopic surgery has been embraced by the international medical community. With the adoption of the new technique, new problems never previously encountered in open surgery, were revealed. One such problem is that the removal of large tissue specimens and organs is restricted by the small incision size. Instruments have been developed to address this problem however none of the devices provide a totally satisfactory solution. They have a number of critical weaknesses: -The size of the access incision has to be enlarged, thereby compromising the entire endoscopic approach to surgery. - The physical quality of the specimen extracted is very poor and is not suitable to conduct the necessary post operative pathological examinations. -The safety of both the patient and the physician is jeopardised. The problem of tissue and organ extraction at endoscopy is investigated and addressed. In addition to background information covering endoscopic surgery, this thesis describes the entire approach to the design problem, and the steps taken before arriving at the final solution. This thesis contributes to the body of knowledge associated with the development of endoscopic surgical instruments. A new product capable of extracting large tissue specimens and organs in endoscopy is the final outcome of the research.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmental progression and differentiation of distinct cell types depend on the regulation of gene expression in space and time. Tools that allow spatial and temporal control of gene expression are crucial for the accurate elucidation of gene function. Most systems to manipulate gene expression allow control of only one factor, space or time, and currently available systems that control both temporal and spatial expression of genes have their limitations. We have developed a versatile two-component system that overcomes these limitations, providing reliable, conditional gene activation in restricted tissues or cell types. This system allows conditional tissue-specific ectopic gene expression and provides a tool for conditional cell type- or tissue-specific complementation of mutants. The chimeric transcription factor XVE, in conjunction with Gateway recombination cloning technology, was used to generate a tractable system that can efficiently and faithfully activate target genes in a variety of cell types. Six promoters/enhancers, each with different tissue specificities (including vascular tissue, trichomes, root, and reproductive cell types), were used in activation constructs to generate different expression patterns of XVE. Conditional transactivation of reporter genes was achieved in a predictable, tissue-specific pattern of expression, following the insertion of the activator or the responder T-DNA in a wide variety of positions in the genome. Expression patterns were faithfully replicated in independent transgenic plant lines. Results demonstrate that we can also induce mutant phenotypes using conditional ectopic gene expression. One of these mutant phenotypes could not have been identified using noninducible ectopic gene expression approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.