913 resultados para interactive fuzzy satisfying method
Resumo:
O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
A comparative study, with theoretical analysis and digital simulations, of two conditions based on LMI for the quadratic stability of nonlinear continuous-time dynamic systems, described by Takagi-Sugeno fuzzy models, are presented. This paper shows that the methods proposed by Teixeira et. al. in 2003 provide better or at least the same results of a recent method presented in the literature. © 2005 IEEE.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
This paper presents the construction of a fuzzy environmental quality index for decision support in municipal environmental management. Five groups of indicators were selected in order to obtain an equation that best represented reality in terms of environmental quality. The calculation was carried out using fuzzy mathematical concepts, with the aid of the package Fuzzy Logical Toolbox 2.1 for Matlab ® 6.1, which provides functions and some applications of the theory of fuzzy sets. The work seeks to create a method of inference concerning the nature of urban areas that are unsustainable with respect to the environment, an issue that is often relegated to the background during public policy discussions. The development of this index, together with its implementation and dissemination, could improve public awareness of environmental issues, and promote mobilization towards the use of best practices in local development. © 2010 IEEE.
Resumo:
Due to growing urbanization and industrialization, the environment is suffering from pollution of rivers, degradation of soils and deteriorated air quality. Quality indices appear to be useful to evaluate the conditions of these media. The aim of this study was the development of a water quality index using a fuzzy inference system, since such an approach has proved advantageous in addressing problems that are subjective by nature or for which the data are uncertain. The methodology employed was based on this inference system, and considered the nine water quality parameters employed by CETESB (Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brazil) to evaluate water quality. After assessment of the data using the index, a comparison was made with the WQI (Water Quality Index), which is used for the monitoring of various water bodies, including in the study region. The results obtained using the index developed on the basis of fuzzy inference were found to be more useful than those derived from the method currently used by CETESB, since losses and/or omissions concerning individual parameters were minimized. © 2010 IEEE.
Resumo:
In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.
Resumo:
Feedback control systems have been used to move the muscles and joints of the limbs of paraplegic patients. The feedback signal, related to the knee joint angle, can be obtained by using an electrogoniometer. However, the use of accelerometers can help the measurements due the facility of adhering these devices to the skin. Accelerometers are also very suitable for these applications due their small dimensions and weight. In this paper a new method for designing a control system that can vary the knee joint angle using Functional Electrical Stimulation (FES) is presented, as well as a simulation with parameters values available in the literature. The nonlinear control system was represented by a Takagi-Sugeno fuzzy model and the feedback signals were obtained by using accelerometers. The design method considered all plant nonlinearities and was efficient and reliable to control the leg position of a paraplegic patient with the angle of the knee ranging from 0° to 30°, considering electric stimulation at the quadriceps muscle. The proposed method is viable and offers a new alternative for designing control systems of the knee joint angle using more comfortable sensors for the patients.
Resumo:
Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS