604 resultados para insecticides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective and background. Tobacco smoking, pancreatitis and diabetes mellitus are the only known causes of pancreatic cancer, leaving ample room for yet unidentified determinants. This is an empirical study on a Finnish data on occupational exposures and pancreatic cancer risk, and a non-Bayesian and a hierarchical Bayesian meta-analysis of data on occupational factors and pancreatic cancer. Methods. The case-control study analyzed 595 incident cases of pancreatic cancer and 1,622 controls of stomach, colon, and rectum cancer, diagnosed 1984-1987 and known to be dead by 1990 in Finland. The next-of-kin responded to a mail questionnaire on job and medical histories and lifestyles. Meta-analysis of occupational risk factors of pancreatic cancer started off with 1,903 identified studies. The analyses were based on different subsets of that database. Five epidemiologists examined the reports and extracted the pertinent data using a standardized extraction form that covered 20 study descriptors and the relevant relative risk estimates. Random effects meta-analyses were applied for 23 chemical agents. In addition, hierarchical Bayesian models for meta-analysis were applied to the occupational data of 27 job titles using job exposure matrix as a link matrix and estimating the relative risks of pancreatic cancer associated with nine occupational agents. Results. In the case-control study, logistic regressions revealed excess risks of pancreatic cancer associated with occupational exposures to ionizing radiation, nonchlorinated solvents, and pesticides. Chlorinated hydrocarbon solvents and related compounds, used mainly in metal degreasing and dry cleaning, are emerging as likely risk factors of pancreatic cancer in the non-Bayesian and the hierarchical Bayesian meta-analysis. Consistent excess risk was found for insecticides, and a high excess for nickel and nickel compounds in the random effects meta-analysis but not in the hierarchical Bayesian meta-analysis. Conclusions. In this study occupational exposure to chlorinated hydrocarbon solvents and related compounds and insecticides increase risk of pancreatic cancer. Hierarchical Bayesian meta-analysis is applicable when studies addressing the agent(s) under study are lacking or very few, but several studies address job titles with potential exposure to these agents. A job-exposure matrix or a formal expert assessment system is necessary in this situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Difficulty with control of Queensland fruit fly with four cultivars of apples on the Granite Belt, Qld. Warnings that the insecticides dimethoate & fenthion might be removed from the market for apples, had been current for several years. Dimethoate was widely used as a post harvest control measure as well as an in-field treatment. Fenthion also had and still has in-field usage. The project attempted to find a replacement for these control measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most important vegetable crops grown in Indonesia, and particularly lowland coastal production, are the true shallot and chilli. These crops are usually grown in rotation with rice but are far more valuable crops and are increasingly in high demand. They offer an opportunity for small farmers to generate extra income, increase farm profitability and shift away from subsistence production. However, the yield and profitability of shallot and chilli production is severely limited by a range of agronomic constraints. This project aims towards raising the productivity of allium (shallot and garlic) and chilli/capsicum cropping systems. The methodology will include a benchmarking survey and review of grower practices. This will be supplemented with physical surveys of crops for disease incidence and efficiency of fertiliser use. Once surveys are completed in Indonesia and the important pathogens identified, recommendations can be made for disease management. This will include review of chemical usage in Indonesia and Australia to provide best management guidelines for the application of insecticides, fungicides and other chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton-growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via reduced larval cannibalism or mortality in general, singly laid heliothine eggs avoiding detection and asynchronous development benefiting host over parasitoid. Yet, despite these limitations, relatively large Trichogramma pretiosum Riley populations pervade and effectively suppress Helicoverpa (Hardwick) pests in Australian Bt (Bacillus thuringiensis Berliner)-transgenic cotton, Gossypium hirsutum L., crops, especially in the Ord River Irrigation Area (ORIA) of tropical northern Australia, where their impact on the potentially resistant pest species, Helicoverpa armigera (Hubner), is considered integral to the local insecticide resistance management (IRM) strategy for continued, sustainable Bt-transgenic cotton production. When devoid of conventional insecticides, relatively warm and stable conditions of the early dry season in winter grown ORIA Bt-transgenic cotton crops are conducive to Trichogramma proliferation and biological control appears effective. Further, there is considerable scope to improve Trichogramma's biological control potential, in both the ORIA and established cotton-growing regions, via habitat manipulation. It is proposed that Trichogramma may prove equally effective in developing agricultural regions of monsoonal northern Australia, and that environmental constraints on Trichogramma survival, and those of other natural enemies, require due consideration prior to their successful application in biological control programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential for using imidacloprid (a neonicotinoid) and indoxacarb (an oxadiazine) as grain protectants was investigated in bioassays against resistant strains of five stored grain beetles. The species investigated were Rhyzopertha dominica (F.) (the lesser grain borer), Sitophilus oryzae (L.) (the rice weevil), Tribolium castaneum (Herbst) (the rust-red flour beetle), Oryzaephilus surinamensis (L.) (the saw tooth flour beetle), and Cryptolestes ferrugineus (Stephens) (the flat grain beetle). Each of these species has developed resistance to one or more protectants, including organophosphorus insecticides, synthetic pyrethroids and the juvenile hormone analogue methoprene. Mortality and reproduction after a 2-week exposure of adults to treated wheat depended on species, dose and insecticide. Imidacloprid had no effect on S. oryzae at any dose, but none of the other species produced any live progeny at 10 mg/kg. Indoxacarb had no effect on T. castaneum at any dose, but none of the other species produced any live progeny at 5 mg/kg. The results show that although both imidacloprid and indoxacarb can control at least four of the five key pests tested at doses comparable to those used for organophosphorus protectants, more potent neonicotinoid or oxadiazine insecticides would be needed than either of these to provide broad spectrum protection of stored grain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Queensland fruit fly, Bactrocera tryoni, is the major pest fruit fly in Australia. Protein bait sprays, where insecticides are mixed with spot applications of a protein based food lure, are one of the sustainable pre-harvest fruit fly management strategies used in Australia. Although protein bait sprays do manage fruit fly infestation in the field, there is little science underpinning this technique and so improving its efficacy is difficult. Lacking information includes where and when to apply protein bait in order to best target foraging B. tryoni. As part of new work in this area, we investigated the effect of height of protein on tree and host plant fruiting status on the spatial and temporal protein foraging patterns of B. tryoni. MEthod: The work was conducted in the field using nectarine and guava plants and wild B. tryoni at Redland Bay, Queensland, Australia. Spot sprays of protein bait were applied to the foliage of randomly selected fruiting and non-fruiting trees. Each tree received protein bait spot sprays on the lower and higher foliage at 0530hrs. The number, sex and species of flies that fed on each protein spot were recorded hourly from 0600hrs through to 1800hrs.Results: For nectarines, there was a significant difference in the number of B. tryoni feeding on protein bait placed at different locations within the tree (ANOVA, F = 8.898, p = 0.001). More flies fed on protein placed on higher foliage relative to lower, irrespective of the fruiting status of the nectarine trees. A significant difference was also observed in the diurnal protein feeding pattern of B. tryoni (ANOVA, F = 2.164, p = 0.024), with more flies feeding at 1600hrs. Results for guava are still being collected and will be presented at the meeting.Conclusions: We conclude that B. tryoni effectively forages for protein at heights higher than 1.3m from ground, indicating greater efficacy of protein bait when applied at foliage higher in the canopy. Bactrocera tryoni actively forages for protein throughout the day, with a highest feeding peak at 1600hrs. The lack of significant difference in the spatial protein foraging pattern between fruiting and non-fruiting nectarine trees may be a real result, or may have resulted from the fruiting tree being very close (within 1 – 2 metres) of the non-fruiting tree. This hypothesis is being tested in the guava trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fruit size and quality are major problems in early-season stonefruit cultivars grown in Australia and South-East Asia. In Australia, Thailand and Vietnam, new training and trellising systems are being developed to improve yield and fruit quality. Australian trials found that new training systems, such as the Open Tatura system, are more productive compared with standard vase-trained trees. We established new crop-loading indices for low-chill stonefruit to provide a guide for optimum fruit thinning based on fruit number per canopy surface and butt cross sectional area. Best management practices were developed for low-chill stonefruit cultivation using growth retardants, optimizing leaf nitrogen concentrations and controlling rates and timing of irrigation. Regulated deficit irrigation (RDI) improved fruit sugar concentrations by restricting water application during stage II of fruit growth. New pest and disease control measures are also being developed using a new generation of fruit fly baits. Soft insecticides such as (Spinosad) are used at significantly lower concentrations and have lower mammalian toxicity than the organophosphates currently registered in Australia. In addition, fruit fly exclusion netting effectively eliminated fruit fly and many other insect pests from the orchard with no increase in diseases. This netting system increased sugar concentrations of peach and nectarine by as much as 30%. Economic analyses showed that the break-even point can be reduced from 12 to 6 years Open Tatura trellising and exclusion netting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrips can be important pests of capsicum and chilli crops, causing damage through their feeding and by vectoring viral diseases. As different species vary in their ability to transmit viruses and in their susceptibility to insecticides, it is important to know which species are present in a crop. The seasonal occurrence of thrips in capsicum and chilli crops in the Bundaberg district of south-east Queensland was investigated from July 2002 to June 2003. Fifty flowers were collected weekly from crops on seven farms and the adult thrips extracted and identified. Thrips palmi Karny and Frankliniella occidentalis (Pergande) were collected in the greatest numbers, with T. palmi predominant in autumn crops (March to July) and F. occidentalis predominant in spring crops (August to November). Pseudanaphothrips achaetus (Bagnall) was common, while Thrips tabaci Lindeman, Thrips imaginis Bagnall and Frankliniella schultzei (Trybom) were collected in low numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February-April) for the Pretoria site, summer (November-January) for the Zululand site and spring (August-October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management of cucumber fly (Bactrocera cucumis) has relied heavily on cover sprays of broad spectrum insecticides such as dimethoate and fenthion. Long term access to these insecticides is uncertain, and their use can disrupt integrated pest management programs for other pests such as whitefly, aphids and mites. Application of a protein bait spray for fruit fly control is common practice in tree crops. However, vegetable crops present different challenges as fruit flies are thought to enter these crops only to oviposit, spending the majority of their time in roosting sites outside of the cropping area. Perimeter baiting of non-crop vegetation was developed overseas as a technique for control of melon fly (B. cucurbitae) in cucurbits in Hawaii. More recent work has refined the technique further, with certain types of perimeter vegetation proving more attractive to melon fly than the sorghum or corn crops which are commonly utilised. Trials were performed to investigate the potential of developing a similar system for cucumber fly. Commercially available fruit fly baits were compared for attractiveness to cucumber fly. Eight plant species were evaluated for their relative attractiveness to cucumber flies as roosting sites. Differences were observed in the number of flies feeding at protein bait applied to each of the plants. Results are discussed in the context of the development of a perimeter baiting system for cucumber fly in cucurbit crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historical use of essential oils (EOs) from Australian native plants for therapeutic and food purposes, both by the indigenous people and the early colonial settlers, have been reported. The use of EOs in food applications is based on the needs of today's consumer looking for wholesome food without chemical preservatives. This green consumerism has also spread to agricultural practices and increasingly there is a demand for the use of environmentally friendly alternatives to replace conventional insecticides. There is also an increasing demand for new flavors in the food and beverage sector and EOs, with their unique and exciting aromas and flavors, can contribute to this market need. However, it is important to note that each geographical region has considerable variability in the types of plants from which EOs are derived. This chapter illustrates this with reference to Australia and covers trends in the use of Australian native EOs in food and agriculture applications.