828 resultados para inférence à distance finie


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early 1900s, the wolf (Canis lupus) was extirpated from France and Switzerland. There is growing evidence that the species is presently recolonizing these countries in the western Alps. By sequencing the mitochondrial DNA (mtDNA) control region of various samples mainly collected in the field (scats, hairs, regurgitates, blood or tissue; n = 292), we could (1) develop a non-invasive method enabling the unambiguous attribution of these samples to wolf, fox (Vulpes vulpes) or dog (Canis familiaris), among others; (2) demonstrate that Italian, French and Swiss wolves share the same mtDNA haplotype, a haplotype that has never been found in any other wolf population world-wide. Combined together, field and genetic data collected over 10 years corroborate the scenario of a natural expansion of wolves from the Italian source population. Furthermore, such a genetic approach is of conservation significance, since it has important consequences for management decisions. This first long-term report using non-invasive sampling demonstrates that long-distance dispersers are common, supporting the hypothesis that individuals may often attempt to colonize far from their native pack, even in the absence of suitable corridors across habitats characterized by intense human activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Ankle arthrodesis (AD) and total ankle replacement (TAR) are typical treatments for ankle osteoarthritis (AO). Despite clinical interest, there is a lack of their outcome evaluation using objective criteria. Gait analysis and plantar pressure assessment are appropriate to detect pathologies in orthopaedics but they are mostly used in lab with few gait cycles. In this study, we propose an ambulatory device based on inertial and plantar pressure sensors to compare the gait during long-distance trials between healthy subjects (H) and patients with AO or treated by AD and TAR. Methods: Our study included four groups: 11 patients with AO, 9 treated by TAR, 7 treated by AD and 6 control subjects. An ambulatory system (Physilog®, CH) was used for gait analysis; plantar pressure measurements were done using a portable insole (Pedar®-X, DE). The subjects were asked to walk 50 meters in two trials. Mean value and coefficient of variation of spatio-temporal gait parameters were calculated for each trial. Pressure distribution was analyzed in ten subregions of foot. All parameters were compared among the four groups using multi-level model-based statistical analysis. Results: Significant difference (p <0.05) with control was noticed for AO patients in maximum force in medial hindfoot and forefoot and in central forefoot. These differences were no longer significant in TAR and AD groups. Cadence and speed of all pathologic groups showed significant difference with control. Both treatments showed a significant improvement in double support and stance. TAR decreased variability in speed, stride length and knee ROM. Conclusions: In spite of a small sample size, this study showed that ankle function after AO treatments can be evaluated objectively based on plantar pressure and spatio-temporal gait parameters measured during unconstrained walking outside the lab. The combination of these two ambulatory techniques provides a promising way to evaluate foot function in clinics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the genetic diversity of 16 maize inbred lines, and to determine the correlation between genetic distance and hybrid performance, using random amplified polymorphic DNA (RAPD) molecular markers. Twenty-two different random primers were used, which resulted in the amplification of 265 fragments, 237 (84.44%) of them being polymorphic. A genetic similarity matrix was created from the RAPD data, using Jaccard coefficient, and a dendrogram was constructed. Hybrid analyses were carried out using random block design and Griffing method VI for diallel crossings. The genetic associations showed five distinct heterotic groups. Correlations between genetic divergences detected by RAPD, as well as the means observed in the diallel crossings were positive and significant for plant height, ear height, prolificacy, and grain weight. The correlation of genetic divergences, detected by RAPD, and the specific combining ability between heterotic group associations, showed significance in all characteristics under study, except prolificacy. A direct relationship between genetic divergence and productivity was found in 79.2% of the 120 hybrids confirming the hypothesis that genetic divergence is directly related to the performance of hybrids and is efficient in predicting it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a class of models of social network formation based on a mathematical abstraction of the concept of social distance. Social distance attachment is represented by the tendency of peers to establish acquaintances via a decreasing function of the relative distance in a representative social space. We derive analytical results (corroborated by extensive numerical simulations), showing that the model reproduces the main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations, and the emergence of a hierarchy of communities. The model is confronted with the social network formed by people that shares confidential information using the Pretty Good Privacy (PGP) encryption algorithm, the so-called web of trust of PGP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on a project at the Universitat Oberta de Catalunya (UOC: The Open University of Catalonia, Barcelona) to develop an innovative package of hypermedia-based learning materials for a new course entitled 'Current Issues in Marketing'. The UOC is a distance university entirely based on a virtual campus. The learning materials project was undertaken in order to benefit from the advantages which new communication technologies offer to the teaching of marketing in distance education. The article reviews the main issues involved in incorporating new technologies in learning materials, the development of the learning materials, and their functioning within the hypermedia based virtual campus of the UOC. An empirical study is then carried out in order to evaluate the attitudes of students to the project. Finally, suggestions for improving similar projects in the future are put forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies gray-level distance transforms, particularly the Distance Transform on Curved Space (DTOCS). The transform is produced by calculating distances on a gray-level surface. The DTOCS is improved by definingmore accurate local distances, and developing a faster transformation algorithm. The Optimal DTOCS enhances the locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which minimize the maximum error from the Euclideandistance in the image plane, and produce more accurate global distance values.Convergence properties of the traditional mask operation, or sequential localtransformation, and the ordered propagation approach are analyzed, and compared to the new efficient priority pixel queue algorithm. The Route DTOCS algorithmdeveloped in this work can be used to find and visualize shortest routes between two points, or two point sets, along a varying height surface. In a digital image, there can be several paths sharing the same minimal length, and the Route DTOCS visualizes them all. A single optimal path can be extracted from the route set using a simple backtracking algorithm. A new extension of the priority pixel queue algorithm produces the nearest neighbor transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map. The transformation divides the image into regions so that each pixel belongs to the region surrounding the reference point, which is nearest according to the distance definition used. Applications and application ideas for the DTOCS and its extensions are presented, including obstacle avoidance, image compression and surface roughness evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.