891 resultados para index of profitability
Resumo:
In order to investigate the paleoceanographic record of dissolution of calcium carbonate (CaCO3) in the central equatorial Pacific Ocean, we have studied the relationship between three indices of foraminiferal dissolution and the concentration and accumulation of CaCO3, opal, and Corg in Core WEC8803B-GC51 (1.3°N, 133.6°W; 4410 m). This core spans the past 413 kyr of deposition and moved in and out of the lysoclinal transition zone during glacial-interglacial cycles of CaCO3 production and dissolution. The record of dissolution intensity provided by foraminiferal fragmentation, the proportion of benthic foraminifera, and the foraminiferal dissolution index consistently indicates that the past corrosion of pelagic CaCO3 in the central equatorial Pacific does not vary with the observed sedimentary concentration of CaCO3. Although there is a weak low-frequency variation (~100 kyr) in dissolution intensity, it is unrelated to sedimentary CaCO3 concentration. There are many shorter-lived episodes where high CaCO3 concentration is coincident with poor foraminiferal preservation, and where, conversely, low CaCO3 concentration is coincident with superb foraminiferal preservation. Spectral analyses indicate that dissolution maxima consistently lagged glacial maxima (manifest by the SPECMAP delta18O stack) in the 100-kyr orbital band. Additionally, there is no relationship between dissolution and the accumulation of biogenic opal or Corg or between dissolution and the burial ratio of Corg/CINorg (calculated from Corg and CaCO3). Because previous studies of this core strongly suggest that surface water productivity varied closely with CaCO3 accumulation, both the mechanistic decoupling of carbonate dissolution from CaCO3 concentration (and from biogenic accumulation) and the substantial phase shift between dissolution and global glacial periodicity effectively obscure any simple link between export production, CaCO3 concentration, and dissolution of sedimentary CaCO3.
Resumo:
The Dansgaard-Oeschger oscillations and Heinrich events described in North Atlantic sediments and Greenland ice are expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. Given the strength of this teleconnection, we seek to reconstruct its range of environmental impacts. We present geochemical and sedimentological data from core SO130-289KL from the Indus submarine slope spanning the last ~ 80 kyr. Elemental and grain size analyses consistently indicate that interstadials are characterized by an increased contribution of fluvial suspension from the Indus River. In contrast, stadials are characterized by an increased contribution of aeolian dust from the Arabian Peninsula. Decadal-scale shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related proxies. Heinrich events stand out as especially dry and dusty events, indicating a dramatically weakened Indian summer monsoon, potentially increased winter monsoon circulation, and increased aridity on the Arabian Peninsula. This finding is consistent with other paleoclimate evidence for continental aridity in the northern tropics during these events. Our results strengthen the evidence that circum-North Atlantic temperature variations translate to hydrological shifts in the tropics, with major impacts on regional environmental conditions such as rainfall, river discharge, aeolian dust transport, and ocean margin anoxia.