999 resultados para inclusões diferenciais lineares


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af) e parâmetros dimensionais do limbo foliar, como o comprimento (C) ao longo da nervura principal e a largura máxima (L) perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L), com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L), com coeficiente de determinação de 0,9711.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf) e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L), e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Matemática e as Ciências Farmacêuticas encontram-se relacionadas desde há muito, no entanto, foi a partir do séc. XVII, período de notável agitação cultural e científico que os métodos experimentais foram sustentados com cálculos matemáticos. Esta ciência e as técnicas de modelagem matemática tornaram-se numa ferramenta amplamente utilizada, de tal modo, que nos dias de hoje são consideradas como fundamentais na generalidade das profissões e em especial nas Ciências Farmacêuticas. Contudo, para muitos ainda não é vista como fundamental e essencial para a formação de futuros farmacêuticos. Deste modo, pretende-se demonstrar como a Matemática e as técnicas de modelagem se tornaram ao longo dos anos nesta poderosa ferramenta. Quer pelos instrumentos, quer pelas competências que nos proporcionam. Pretende-se também, com recurso aos conteúdos programáticos desta unidade curricular, avaliar se os conhecimentos, sistemas de avaliação e distribuição da carga horária são efetuados de forma homogénea pelas diferentes instituições portuguesas, públicas ou privadas que lecionam o Mestrado Integrado em Ciências Farmacêuticas. Verificou-se que a Matemática é uma ciência plena de capacidades e recursos e que estabelece uma relação interdisciplinar com as Ciências Farmacêuticas. Quer pela componente utilitária, quer pela componente formativa que proporciona. A análise dos conteúdos programáticos demonstra que apesar de serem transversais, as Universidades que não lecionam Sistemas de Equações Lineares e Equações diferenciais deveriam faze-lo e também realizarem um melhor controlo da carga horária por temática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modelagem matemática de problemas importantes e significativos da engenharia, física e ciências sociais pode ser formulada por um conjunto misto de equações diferenciais e algébricas (EADs). Este conjunto misto de equações deve ser previamente caracterizado quanto a resolubilidade, índice diferencial e condições iniciais, para que seja possível utilizar um código computacional para resolvê-lo numericamente. Sabendo-se que o índice diferencial é o parâmetro mais importante para caracterizar um sistema de EADs, neste trabalho aplica-se a redução de índice através da teoria de grafos, proposta por Pantelides (1988). Este processo de redução de índice é realizado numericamente através do algoritmo DAGRAFO, que transforma um sistema de índice superior para um sistema reduzido de índice 0 ou 1. Após esta etapa é necessário fornecer um conjunto de condições inicias consistentes para iniciar o código numérico de integração, DASSLC. No presente trabalho discute-se três técnicas para a inicialização consistente e integração numérica de sistemas de EADs de índice superior. A primeira técnica trabalha exclusivamente com o sistema reduzido, a segunda com o sistema reduzido e as restrições adicionais que surgem após a redução do índice introduzindo variáveis de restrição, e a terceira técnica trabalha com o sistema reduzido e as derivadas das variáveis de restrição. Após vários testes, conclui-se que a primeira e terceira técnica podem gerar um conjunto solução mesmo quando recebem condições iniciais inconsistentes. Para a primeira técnica, esta característica decorre do fato que no sistema reduzido algumas restrições, muitas vezes com significado físico importante, podem ser perdidas quando as equações algébricas são diferenciadas. Trabalhando com o sistema reduzido e as derivadas das variáveis de restrição, o erro da inicialização é absorvido pelas variáveis de restrição, mascarando a precisão do código numérico. A segunda técnica adotada não tem como absorver os erros da inicialização pelas variáveis de restrição, desta forma, quando as restrições adicionais não são satisfeitas, não é gerada solução alguma. Entretanto, ao aplicar condições iniciais consistentes para todas as técnicas, conclui-se que o sistema reduzido com as derivadas das variáveis restrição é o método mais conveniente, pois apresenta melhor desempenho computacional, inclusive quando a matriz jacobiana do sistema apresenta problema de mau condicionamento, e garante que todas as restrições que compõem o sistema original estejam presentes no sistema reduzido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho visa realizar o estudo do comportamento dinâmico de um eixo rotor flexível, modelado segundo a teoria de Euler-Bernoulli e caracterizar as respostas periódicas de sistemas LTI (sistemas lineares invariantes no tempo) e sistemas fracamente não lineares de ordem arbitrária. Para tanto, é utilizada a base dinâmica gerada pela resposta impulso ou solução fundamental. O comportamento dinâmico de um eixo rotor flexível foi discutido em termos da função de Green espacial e calculada de maneira não-modal. Foi realizado um estudo do problema de autovalor para o caso de um um eixo rotor biapoiado. As freqüências são obtidas e os modos escritos em termos da base dinâmica e da velocidade de rotação. As respostas periódicas de sistemas LTI, utilizadas nas aproximações com sistemas fracamente não lineares, são obtidas, independentemente da ordem do sistema, como um operador integral onde o núcleo é a função de Green T-periódica. Esta função é caracterizada em termos das propriedades de continuidade, periodicidade e salto da função de Green T-periódica, e da base dinâmica Simulações foram realizadas para sistemas concentrados, matriciais e escalares, com o objetivo de mostrar a validade da metodologia desenvolvida com as propriedades da função de Green T-periódica. Foi abordado um modelo não-linear para uma centrífuga utilizada na indústria textil [Starzinski, 1977].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho cuida de avaliar a eficiência do mercado de opções de ações da bolsa de valores de são Paulo (BOVESPA). A avaliação é feita através do modelo Black-Scholes, e traz como principal novidade diversas estimativas de volatilidade. Portanto torna-se um teste conjunto da eficiência do mercado, do modelo Black-Scholes e das diversas estimativas de volatilidade. O objetivo principal ~ determinar a volatilidade que gera o melhor retorno , isto é , aponta a maior ineficiência do mercado. Foram utilizadas opções de Paranapanema-pp e Petrobr's-pp no per(odo de novembro de 1987 a outubro de 1988. Dois testes de eficiência foram realizados para cada volatilidade estimada . Em ambos observou-se que o mercado é ineficiente, e no segundo obtivemos evidência de que uma das estimativas de volatilidade gera um retorno maio

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo decompõe o diferencial de salários por cor e sexo dos trabalhadores brasileiros usando os microdados da Pesquisa Nacional por Amostra de Domicílio (PNAD). A metodologia consiste em estimar a equação de salários (Mincer, 1974) com a correção do viés de seleção das informações dos salários (Heckman, 1979). Em seguida, a decomposição do diferencial da média do logaritmo do salário/hora foi obtida pelo procedimento de Oaxaca (1973) apresentada em dois efeitos: características produtivas e discriminação. A análise empírica tem como foco o uso adequado de procedimentos de modelagem estatística em pesquisas, por amostragem complexa, conforme os trabalhos de Skinner e Smith (1989) e Pessoa e Silva (1998). Os resultados indicam a necessidade de se incorporar o plano amostral e a correção do viés de seleção da informação dos salários, visando melhorar a qualidade das estimativas das equações de salários e avaliar adequadamente as medidas de discriminação. Como exemplo, a estimativa do coeficiente de discriminação, D, entre homens e mulheres de cor branca é 0,37 sem a correção do viés e 0,30 com a correção do viés de seleção das informações dos salários.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vários métodos analíticos, numéricos e híbridos podem ser utilizados na solução de problemas de difusão e difusão-advecção. O objetivo deste trabalho é apresentar dois métodos analíticos para obtenção de soluções em forma fechada da equação advectivo-difusiva em coordenadas cartesianas que descreve problemas de dispersão de poluentes na água e na atmosfera. Um deles é baseado em regras de manipulação de exponenciais de operadores diferenciais, e o outro consiste na aplicação de simetrias de Lie admitidas por uma equação diferencial parcial linear. Desenvolvem-se regras para manipulação de exponenciais de operadores diferenciais de segunda ordem com coeficientes constantes e para operadores advectivo-difusivos. Nos casos em que essas regras não podem ser aplicadas utiliza-se uma formulação para a obtenção de simetrias de Lie, admitidas por uma equação diferencial, via mapeamento. Define-se um operador diferencial com a propriedade de transformar soluções analíticas de uma dada equação diferencial em novas soluções analíticas da mesma equação. Nas aplicações referentes à dispersão de poluentes na água, resolve-se a equação advectivo-difusiva bidimensional com coeficientes variáveis, realizando uma mudança de variáveis de modo a reescrevê-la em termos do potencial velocidade e da função corrente correspondentes ao respectivo escoamento potencial, estendendo a solução para domínios de contornos arbitrários Na aplicação referente ao problema de dispersão de poluentes na atmosfera, realiza-se uma mudança de variáveis de modo a obter uma equação diferencial parcial com coeficientes constantes na qual se possam aplicar as regras de manipulação de exponenciais de operadores diferenciais. Os resultados numéricos obtidos são comparados com dados disponíveis na literatura. Diversas vantagens da aplicação das formulações apresentadas podem ser citadas, a saber, o aumento da velocidade de processamento, permitindo a obtenção de solução em tempo real; a redução da quantidade de memória requerida na realização de operações necessárias para a obtenção da solução analítica; a possibilidade de dispensar a discretização do domínio em algumas situações.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A determinação e a mensuração da importância das principais fontes de vantagem competitiva, ainda é um tema em discussão na área de Estratégia. Uma linha de pesquisa, iniciada em meados dos anos 80, tem seu foco principal na determinação e quantificação da importância dos fatores que poderiam explicar as diferenças no desempenho de um grupo de empresas, utilizando a decomposição da variância dos valores do desempenho através das técnicas de Regressão Linear ou de Componentes de Variância. Nesta linha de pesquisa, desenvolveram-se uma série de trabalhos empíricos cujo propósito principal é quantificar, entre outros fatores, qual a importância do setor industrial em que a empresa atua, qual a importância do ano, qual a importância de se fazer parte de um grupo econômico e qual a importância dos fatores idiossincráticos da empresa na explicação do desempenho apresentado em determinados períodos. Dos resultados destes trabalhos surgiram discussões importantes sobre o papel da estratégia corporativa e sobre a importância relativa de tais fatores na determinação da vantagem competitiva. Este trabalho se insere nesta linha de pesquisa, cujo objetivo é, utilizando uma base de dados brasileira muito mais abrangente e completa que os estudos anteriores, quer nacionais e internacionais, primeiramente verificar se a realidade apontada nos estudos internacionais se assemelha à do Brasil. Em segundo lugar, contribuir com um refinamento teórico, refazendo estas análises utilizando modelos lineares mistos, mais apropriados para estes conjuntos de dados, que os modelos de componentes de variância. Em terceiro lugar, utilizando dois tipos de matriz de covariância, verifica se o desempenho de um determinado ano influi no desempenho dos anos imediatamente subseqüentes, verificando, assim, a possível existência de medidas repetidas para a variável ano. Finalmente, analisa se parte da variabilidade do desempenho das empresas brasileiras pode ser atribuído ao fato da empresa se localizar em determinada Unidade da Federação