910 resultados para impact fatigue (repeated impulsive loading)
Resumo:
Es desenvolupa una eina de disseny per l'anàlisi de la tolerància al dany en composites. L'eina pot predir el inici i la propagació de fisures interlaminars. També pot ser utilitzada per avaluar i planificar la necessitat de reparar o reemplaçar components durant la seva vida útil. El model desenvolupat pot ser utilitzat tan per simular càrregues estàtiques com de fatiga. El model proposat és un model de dany termodinàmicament consistent que permet simular la delaminació en composites sota càrregues variables. El model es formula dins el context de la Mecànica del Dany, fent ús dels models de zona cohesiva. Es presenta un metodologia per determinar els paràmetres del model constitutiu que permet utilitzar malles d'elements finits més bastes de les que es poden usar típicament. Finalment, el model és també capaç de simular la delaminació produïda per càrregues de fatiga.
Resumo:
La aplicación de materiales compuestos de matriz polimérica reforzados mediante fibras largas (FRP, Fiber Reinforced Plastic), está en gradual crecimiento debido a las buenas propiedades específicas y a la flexibilidad en el diseño. Uno de los mayores consumidores es la industria aeroespacial, dado que la aplicación de estos materiales tiene claros beneficios económicos y medioambientales. Cuando los materiales compuestos se aplican en componentes estructurales, se inicia un programa de diseño donde se combinan ensayos reales y técnicas de análisis. El desarrollo de herramientas de análisis fiables que permiten comprender el comportamiento mecánico de la estructura, así como reemplazar muchos, pero no todos, los ensayos reales, es de claro interés. Susceptibilidad al daño debido a cargas de impacto fuera del plano es uno de los aspectos de más importancia que se tienen en cuenta durante el proceso de diseño de estructuras de material compuesto. La falta de conocimiento de los efectos del impacto en estas estructuras es un factor que limita el uso de estos materiales. Por lo tanto, el desarrollo de modelos de ensayo virtual mecánico para analizar la resistencia a impacto de una estructura es de gran interés, pero aún más, la predicción de la resistencia residual después del impacto. En este sentido, el presente trabajo abarca un amplio rango de análisis de eventos de impacto a baja velocidad en placas laminadas de material compuesto, monolíticas, planas, rectangulares, y con secuencias de apilamiento convencionales. Teniendo en cuenta que el principal objetivo del presente trabajo es la predicción de la resistencia residual a compresión, diferentes tareas se llevan a cabo para favorecer el adecuado análisis del problema. Los temas que se desarrollan son: la descripción analítica del impacto, el diseño y la realización de un plan de ensayos experimentales, la formulación e implementación de modelos constitutivos para la descripción del comportamiento del material, y el desarrollo de ensayos virtuales basados en modelos de elementos finitos en los que se usan los modelos constitutivos implementados.
Resumo:
Natural exposure to prion disease is likely to occur throughout successive challenges, yet most experiments focus on single large doses of infectious material. We analyze the results from an experiment in which rodents were exposed to multiple doses of feed contaminated with the scrapie agent. We formally define hypotheses for how the doses combine in terms of statistical models. The competing hypotheses are that only the total dose of infectivity is important (cumulative model), doses act independently, or a general alternative that interaction between successive doses occurs (to raise or lower the risk of infection). We provide sample size calculations to distinguish these hypotheses. In the experiment, a fixed total dose has a significantly reduced probability of causing infection if the material is presented as multiple challenges, and as the time between challenges lengthens. Incubation periods are shorter and less variable if all material is consumed on one occasion. We show that the probability of infection is inconsistent with the hypothesis that each dose acts as a cumulative or independent challenge. The incubation periods are inconsistent with the independence hypothesis. Thus, although a trend exists for the risk of infection with prion disease to increase with repeated doses, it does so to a lesser degree than is expected if challenges combine independently or in a cumulative manner.
Resumo:
Experimental programs in constant and variable amplitude loading were performed to obtain a x N curves and to study retardation in fatigue crack growth due to overloads. The main aim of this research program was to analyse the effect of overload ratio and number of overload peaks. The effect of underloads, before and after the overload blocks was also studied. The generalised equation of Paris-Erdogan type was used for modelling of obtained data on crack propagation under constant amplitude load.
Resumo:
Purpose: To identify the electromyographic fatigue threshold in the erector spinae muscle. Methods: Eight 19 to 24-year-old male volunteers participated in this study, in which surface electrodes were used, as well as a biological signals acquisition module (Lynx) with a sampling frequency of 1000Hz, a 1000 times gain, a 20Hz high pass filter and a 500Hz low pass filter. The test consisted of repeated isometric contractions of the erector spinae muscle in a 45° hip flexion posture, with 30%, 40%, 50% and 60% of the maximum voluntary isometric contraction. Results: A positive correlation of the RMS (root mean square) value as a function of time was found for most of the subjects with 40% (N = 6), 50% (N = 7) and 60% (N = 8) loads of the maximum voluntary isometric contraction. Conclusions: It was concluded, from this study, that the proposed protocol provides evidence, through the electromyographic signal, of the development of fatigue in the erector spinae muscle with loads of 40%, 50% and 60% of the maximum voluntary isometric contraction. The protocol also allows the electromyographic fatigue threshold and its probable applicability in the diagnosis of this phenomenon during repetitive activities to be determined.
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To evaluate healing time before loading, areas compression and tension and location of insertion on mini-implant stability. Design: Six minipigs were used. Each animal received 3 mini-implants in each quadrant: 1 mini-implant was used as an unloaded control (G1, n = 24); the other 2 were loaded with 150 g-force at three time intervals (G2: immediate loading, G3: after 15 days and G4: after 30 days), with 16 mini-implant in each experimental group. After 120 days, tissue blocks of the areas of interest were harvested. Clinical analysis (exact Fisher test) determined the survival rate. Histological analysis (Kontron KS 300TM, Zeiss) quantified the fractional bone-toimplant contact (%BIC) and bone area (%BA) at each healing time point, areas of interest, and insertion site (ANOVA and t tests for dependent and independent samples). Results: The mini-implant survival rates were G1: 71%, G2: 50%, G3: 75% and G4: 63%, with no statistical differences between them. The groups presented similar %BIC and %BA. There were no differences between the compression and tension sides or maxillary and mandibular insertion sites. Conclusions: These results suggest that low-intensity immediate or early orthodontic loading does not affect mini-implant stability, because similar histomorphometric results were observed for all the groups, with partial osseointegration of the mini-implants present.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
Research on adhesive joints is arousing increasing interest in aerospace industry. Incomplete knowledge of fatigue in adhesively bonded joints is a major obstacle to their application. The prediction of the disbonding growth is yet an open question. This thesis researches the influence of the adhesive thickness on fatigue disbond growth. Experimental testing on specimens with different thickness has been performed. Both a conventional approach based on the strain energy release rate and an approach based on cyclic strain energy are provided. The inadequacy of the former approach is discussed. Outcomes from tests support the idea of correlating the crack growth rate to the cyclic strain energy. In order to push further the study, a 2D finite element model for the prediction of disbond growth under quasi-static loading has been developed and implemented in Abaqus. Numerical simulations have been conducted with different values of the adhesive thickness. The results from tests and simulations are in accordance with each other. According to them, no dependence of disbonding on the adhesive thickness has been evidenced.