899 resultados para immunomagnetic separation – IMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform computer simulations of a Cahn-Hilliard model of phase separation that has dynamical asymmetry between the two coexisting phases. The dynamical asymmetry is incorporated by considering a mobility function that is order parameter dependent. Simulations of this model reveal morphological features similar to those observed in viscoelastic phase separation. In the early stages, the minority phase domains form a percolating structure that shrinks with time, eventually leading to the formation of disconnected regions that are characterized by the presence of random interfaces as well as isolated droplets. The domains grow as L(t)similar to t(1/3) in the very late stages. Although dynamical scaling is violated in the area shrinking regime, it is restored at late times. However, the form of the scaling function is found to depend on the extent of dynamical asymmetry. [S1063-651X(99)12101-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains of Bacillus polymyxa, preadapted and grown in the presence of corundum, were found to be capable of the efficient separation of hematite from alumina. Results of rests peformed using binary hematite-corundum and ternary hematite-quartz-corundum mixtures in the presence of cells and metabolic products separated from the adapted bacterial culture indicated that more than 99% of the hematite could he efficiently separated through selective flocculation after desliming. It was found that alumina-specific bioproteins and other nonproteinaceous compounds were secreted by bacterial cells after adaptation to the mineral. The utility of this bioprocessing is demonstrated in the removal of iron from bauxite ores through selective flocculation in the presence of the adapted bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron powder diffraction measurements on Ca2FeReO6 reveal that this double perovskite orders ferrimagnetically and shows anomalous lattice parameter behavior below T-C=521 K. Below similar to300 K and similar to160 K we observe that the high-T monoclinic crystal structure separates into two and three monoclinic phases, respectively. A magnetic field suppresses the additional phases at low T in favor of the highest-T phase. These manifestations of the orbital degree of freedom of Re 5d electrons indicate that these electrons are strongly correlated and the title compound is a Mott insulator, with competing spin-orbitally ordered states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn-Hilliard (CH) equations for c(A) and c(B), the compositions (in mole fraction) of A and B, respectively. In this work, we present our results on the effect of relative interfacial energies on the temporal evolution of morphologies during spinodal phase separation of an alloy with average composition, c(A) = 1/4, c(B) = 1/4 and c(C) = 1/2. Interfacial energies between the 'A' rich, 'B' rich and 'C' rich phases are varied by changing the gradient energy coefficients. The phases associated with a higher interfacial energy are found to be more rounded than those with lower energy. Further, the kinetic paths (i.e. the history of A-rich, B-rich and C-rich regions in the microstructure) are also affected significantly by the relative interfacial energies of the three phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier desinent cavitation studies on a 1/8 caliber ogive by one of the authors (J. W. H.) showed a sudden change in the magnitude of the desinent cavitation number at a critical velocity. In the present work it is shown by means of oil-film flow visualization that below the critical velocity a long laminar separation bubble exists whereas above the critical velocity the laminar separation bubble is short. Thus the desinent cavitation characteristics of a 1/8 caliber ogive are governed by the nature of the viscous flow around the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Al(1-x)Ga(x)N semiconductors are used in lighting, displays and high-power amplifiers, there is no experimental thermodynamic information on nitride solid solutions. Thermodynamic data are useful for assessing the intrinsic stability of the solid solution with respect to phase separation and extrinsic stability in relation to other phases such as metallic contacts. The activity of GaN in Al(1-x)Ga(x)N solid solution is determined at 1100 K using a solid-state electrochemical cell: Ga + Al(1-x)Ga(x)N/Fe, Ca(3)N(2)//CaF(2)//Ca(3)N(2), N(2) (0.1 MPa), Fe. The solid-state cell is based on single crystal CaF(2) as the electrolyte and Ca(3)N(2) as the auxiliary electrode to convert the nitrogen chemical potential established by the equilibrium between Ga and Al(1-x)Ga(x)N solid solution into an equivalent fluorine potential. Excess Gibbs free energy of mixing of the solid solution is computed from the results. Results suggest an unusual mixing behavior: a mild tendency for ordering at three discrete compositions (x = 0.25, 0.5 and 0.75) superimposed on predominantly positive deviation from ideality. The lattice parameters exhibit slight deviation from Vegard's law, with the a-parameter showing positive and the c-parameter negative deviation. Although the solid solution is stable in the full range of compositions at growth temperatures, thermodynamic instability is indicated at temperatures below 410 K in the composition range 0.26 <= x <= 0.5. At 355 K, two biphasic regions appear, with terminal solid solutions stable only for 0 <= x <= 0.26 and 0.66 <= x <= 1. The range of terminal solid solubility reduces with decreasing temperature. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance characteristics of a junction field-effect transistor (j.f.e.t.) are evaluated considering the presence of the gap between the gate electrode and the source and drain terminals. It is concluded that the effect of the gap is to demand a higher drain voltage to maintain the same drain current. So long as the device is operated at the same drain current, the presence of the gap does not change the performance of the device as an amplifier. The nature of the performance of the device as a variable resistor is not affected by the gap if it is less than or equal to the physical height of the channel. For gap lengths larger than the channel height, the effect of the gap is to add a series resistance in the drain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.