990 resultados para iear-1 reactor
Resumo:
A two-phase system composed by a leach bed and a methanogenic reactor was modified for the first time to improve volumetric substrate degradation and methane yields from a complex substrate (maize; Zea mays). The system, which was operated for consecutive feed cycles of different durations for 120 days, was highly flexible and its performance improved by altering operational conditions. Daily substrate degradation was higher the shorter the feed cycle, reaching 8.5 g TSdestroyed d�1 (7-day feed cycle) but the overall substrate degradation was higher by up to 55% when longer feed cycles (14 and 28 days) were applied. The same occurred with volumetric methane yields, reaching 0.839 m3 (m3)�1 d�1. The system performed better than others on specific methane yields, reaching 0.434 m3 kg�1 TSadded, in the 14-day and 28-day systems. The UASB and AF designs performed similarly as second stage reactors on methane yields, SCOD and VFA removal efficiencies.
Resumo:
Using a simple and accessible Teflon AF-2400 based tube-intube reactor, a series of pyrroles were synthesised in flow using the Paal–Knorr reaction of 1,4-diketones with gaseous ammonia. An inline flow titration technique allowed measurement of the ammonia concentration and its relationship to residence time and temperature.
Resumo:
A general flow process for the multi-step assembly of peptides has been developed and this procedure has been used to successfully construct a series of Boc, Cbz and Fmoc N-protected dipeptides in excellent yields and purities, including an extension of the method to enable the preparation of a tripeptide derivative.
Resumo:
This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The photocatalytic degradation of phenol in aqueous suspensions of TiO(2) under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen- Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.
Resumo:
The hydrodynamic characterization and the performance evaluation of an aerobic three phase fluidized bed reactor in wastewater fish culture treatment are presented in this report. The objective of this study was to evaluate the organic matter, nitrogen and phosphorous removal efficiency in a physical and biological wastewater treatment system of an intensive Nile Tilapia laboratory production with recirculation. The treatment system comprised of a conventional sedimentation basin operated at a hydraulic detention time HDT of 2.94 h and an aerobic three phase airlift fluidized bed reactor AAFBR operated at an 11.9 min HDT. Granular activated carbon was used as support media with density of 1.64 g/cm(3) and effective size of 0.34 mm in an 80 g/L constant concentration. Mean removal efficiencies of BOD, COD, phosphorous, total ammonia nitrogen and total nitrogen were 47%, 77%, 38%, 27% and 24%, respectively. The evaluated system proved an effective alternative for water reuse in the recirculation system capable of maintaining water quality characteristics within the recommended values for fish farming and met the Brazilian standards for final effluent discharges with exception of phosphorous values. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article reports on a series of experiments with polyethylene terepthalate (PET) treated in a radio frequency plasma reactor using argon and oxygen as a gas fuel, for treatment times equal to 5 s, 20 s, 30 s, and 100 s. The mechanical strength modification of PET fibers, evaluated by tensile tests on monofilaments, showed that oxygen and argon plasma treatment resulted in a decrease in the average tensile strength compared with the untreated fibers. This reduction in tensile strength is more significant for argon plasma and is very sensitive to the treatment time for oxygen plasma. Scanning electron microscopy (SEM) used to analyze the effects of cold plasma treatment on fiber surfaces indicates differences in roughness profiles depending on the type of treatments, which were associated with variations in mechanical strength. Differences in the roughness profile, surveyed through an image analysis method, provided the distance of roughness interval, D-ri. This parameter represents the number of peaks contained in a unit length and was introduced to correlate fiber surface condition, before and after cold plasma treatments, and average tensile strength. Statistical analysis of experimental data, using Weibull cumulative distribution and linear representation, was performed to explain influences of treatment time and environmental effects on mechanical properties. The shape parameter, alpha, and density parameter, beta, from the Weibull distribution function were used to indicate the experimental data range and to confirm the mechanical performance obtained experimentally.
Resumo:
Ethylene was polymerized using a combination of Ni(diimine)Cl-2 (1) (diimine = 1,4-bis(2,6-di-isopropylphenyl)-acenaphthenediimine) and {Tp(Ms)*} TiCl3 (2) (Tp(Ms)* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) compounds in the presence of methyl-aluminoxane (MAO) at 30 degrees C. The productivity reaches a maximum at X-Ni = 0.75 (1400 kg of PE/mol[M] . h), and the produced polyethylene (PE) showed maximal melt flow index (0.13 g/10 min) and minimal intrinsic viscosity (2.24 dL/g) compared to polyethylenes obtained with different values of nickel loading fractions (X-Ni). Productivity intrinsic viscosity data, as well as melt flow index measurements markedly depend upon the content of the late transition metal, thus suggesting a synergic effect between nickel and titanium catalysts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The enzyme oxalate oxidase, E.C. 1.2.3.4 from Sorghum vulgare seeds (variety BR303) was used to develop a new sensor for oxalate determination without any purification. The sorghum seeds were conditioned in a 0.10 mol I-1 KCl solution. Then, these seeds were put in a stirring bar type enzymic reactor and coupled with an electrode for CO2. This device was introduced into a cell containing 10.0 ml of a 0.10 mol I-1 KCl solution saturated with oxygen. This sensor showed a linear response between 1.0 and 4.0 × 10-3 mol I-1 with a slope of 30 mV per decade of oxalate concentration at 25.0°C. The sensor was stable for one month or 200 determinations. The response time was about 60 s. The Michaelis-Menten constant determined for this enzyme was 1.5 × 10-3 mol I-1.
Resumo:
A new methodology for soluble oxalic acid determination in grass samples was developed using a two enzyme reactor in an FIA system. The reactor consisted of 3 U of oxalate oxidase and 100 U of peroxidase immobilized on Sorghum vulgare seeds activated with glutaraldehyde. The carbon dioxide was monitored spectrophotometrically, after reacting with an acid-base indicator (Bromocresol Purple) after it permeated through a PTFE membrane. A linear response range was observed between 0.25 and 1.00mmol l-1 of oxalic acid; the data was fit by the equation A=-0.8(±1.5)+ 57.2(±2.5)[oxalate], with a correlation coefficient of 0.9971 and a relative standard deviation of 2% for n=5. The variance for a 0.25 mmol l-1 oxalic acid standard solution was lower than 4% for 11 measurements. The FIA system allows analysis of 20 samples per hour without prior treatment. The proposed method showed a good correlation with that of the Sigma Kit.
Resumo:
Lipases are versatile enzymes regarding the range of reactions they catalyse and substrates on which they act. They are as well important as catalyst in organic synthesis. Their immobilization on appropriate supports confer them greater stability besides the possibility of operating in continuous reactors. In order to explore these abilities, the reactions involving hydrolysis of p-nitrophenyl acetate (PNPA) and transesterification of PNPA with n-butanol were chosen. Lipases from two different sources were assayed, namely: microbial (Candida rugosa, CRL, Sigma Type VII) and pancreatic (PPL, Sigma, Type 11). Two immobilization methods were also used, namely: 1) adsorption, using as support the following silica derivatives (150-300μm e 450μ): phenyl, epoxy, amino and without derivation, and 2) covalent binding, using glutaraldehyde as binding agent and silica amino as support. This later method led to better results. Hydrolytic activity was 6.1 U/gsupport for CRL and 0.97U/gsupport for PPL, and of transesterification, 2,8U/gsupport for CRL and 1,9U/gsupport for PPL. Stability of the immobilized enzyme as a function of temperature was evaluated for CRL at 40°C and 50°C and for PPL at 32°C and 40°C. The assays were initially carried out batchwise, both for soluble and immobilized enzymes, aiming to the obtention of parameters for the continues reactor. Lipases immobilized by covalent binding were used in the assays of operacional stability in continuos reactors. For PPL in aqueous medium, at 32°C, and CRL in organic medium at 40°C, both operating continuously, no significant loss of activity was detected along the analysis period of 17 days. In the case of CRL in aqueous medium at 40°C there was a loss of activity around 40% after 18 days. For PPL in organic medium at 40°C the loss was 33% after 20 days. Compairing both sources with each other, very different results were obtained. Higher activitiy was found for CRL, both for hydrolysis and for transesterification reactions, with higher stability in organic medium. PPL showed lower activity as well as higher stability in aqueous medium. The immobilization method by covalent binding showed to be the most appropriate. Immobilized lipases are therefore relatively stable both in aqueous and organic medium.
Electrochemical oxidation of wastewater containing aromatic amines using a flow electrolytic reactor
Resumo:
Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.