963 resultados para hydraulic control equipment
Resumo:
The fast increase in the energy’s price has brought a growing concern about the highly expensive task of transporting water. By creating an hydraulic model of the Water Supply System’s (WSS) network and predicting its behaviour, it is possible to take advantage of the energy’s tariffs, reducing the total cost on pumping activities. This thesis was developed, in association with a technology transfer project called the E-Pumping. It focuses on finding a flexible supervision and control strategy, adaptable to any existent Water Supply System (WSS), as well as forecasting the water demand on a time period chosen by the end user, so that the pumping actions could be planned to an optimum schedule, that minimizes the total operational cost. The OPC protocol, associated to a MySQL database were used to develop a flexible tool of supervision and control, due to their adaptability to function with equipments from various manufacturers, being another integrated modular part of the E-Pumping project. Furthermore, in this thesis, through the study and performance tests of several statistical models based on time series, specifically applied to this problem, a forecasting tool adaptable to any station, and whose model parameters are automatically refreshed at runtime, was developed and added to the project as another module. Both the aforementioned modules were later integrated with an Graphical User Interface (GUI) and installed in a pilot application at the ADDP’s network. The implementation of this software on WSSs across the country will reduce the water supply companies’ running costs, improving their market competition and, ultimately, lowering the water price to the end costumer.
Resumo:
QUESTION UNDER STUDY: Hospitals transferring patients retain responsibility until admission to the new health care facility. We define safe transfer conditions, based on appropriate risk assessment, and evaluate the impact of this strategy as implemented at our institution. METHODS: An algorithm defining transfer categories according to destination, equipment monitoring, and medication was developed and tested prospectively over 6 months. Conformity with algorithm criteria was assessed for every transfer and transfer category. After introduction of a transfer coordination centre with transfer nurses, the algorithm was implemented and the same survey was carried out over 1 year. RESULTS: Over the whole study period, the number of transfers increased by 40%, chiefly by ambulance from the emergency department to other hospitals and private clinics. Transfers to rehabilitation centres and nursing homes were reassigned to conventional vehicles. The percentage of patients requiring equipment during transfer, such as an intravenous line, decreased from 34% to 15%, while oxygen or i.v. drug requirement remained stable. The percentage of transfers considered below theoretical safety decreased from 6% to 4%, while 20% of transfers were considered safer than necessary. A substantial number of planned transfers could be "downgraded" by mutual agreement to a lower degree of supervision, and the system was stable on a short-term basis. CONCLUSION: A coordinated transfer system based on an algorithm determining transfer categories, developed on the basis of simple but valid medical and nursing criteria, reduced unnecessary ambulance transfers and treatment during transfer, and increased adequate supervision.
Resumo:
A high demand exists to increase the efficiency of present airport ground facilities and the co-ordination of traffic and services. The Traffic Office plays a crucial role in managing the airport. The main tasks of the Traffic Office is management of equipment, services, and ressources based on the flight schedule and resolving conflicts arising from deviations from the schedule. A new tool will support information exchange between Traffic Office and other facilities on the airport.
Resumo:
The centralised control rooms of large industrial plants have separated people from the processes they should control. Perception is restricted mainly to the visual sense. Only telephone or radio links provide narrow-band voice communication with maintenance personnel down in the plant. Multimedia equipment can perceptionally bring back the operator into the plant while bodily keeping him the comfortable and safe control room. This involves video and audio transmission from process components as well as sights and sounds artificially generated from measurements. Groupware systems support inter-action between operators, engineers, and managers in different plants. With support from the German government, the state of Hessen, and industrial companies the Laboratory for Systems Engineering and Human-Machine Systems at the University of Kassel establishes an Experimental Multimedia Process Control Room. Core of this set-up are two high-performance graphics workstations linked to one of several process or vehicle simulators. Multimedia periphery includes video and teleconferencing equipment and a vibration and sound generation system.
Resumo:
Globalization has been accompanied by the rapid spread of infectious diseases, and further strain on working conditions for health workers globally. Post-SARS, Canadian occupational health and infection control researchers got together to study how to better protect health workers, and found that training was indeed perceived as key to a positive safety culture. This led to developing information and communication technology (ICT) tools. The research conducted also showed the need for better workplace inspections, so a workplace audit tool was also developed to supplement worker questionnaires and the ICT. When invited to join Ecuadorean colleagues to promote occupational health and infection control, these tools were collectively adapted and improved, including face-to-face as well as on-line problem-based learning scenarios. The South African government then invited the team to work with local colleagues to improve occupational health and infection control, resulting in an improved web-based health information system to track incidents, exposures, and occupational injury and diseases. As the H1N1 pandemic struck, the online infection control course was adapted and translated into Spanish, as was a novel skill-building learning tool that permits health workers to practice selecting personal protective equipment. This tool was originally developed in collaboration with the countries from the Caribbean region and the Pan American Health Organization (PAHO). Research from these experiences led to strengthened focus on building capacity of health and safety committees, and new modules are thus being created, informed by that work. The products developed have been widely heralded as innovative and interactive, leading to their inclusion into “toolkits” used internationally. The tools used in Canada were substantially improved from the collaborative adaptation process for South and Central America and South Africa. This international collaboration between occupational health and infection control researchers led to the improvement of the research framework and development of tools, guidelines and information systems. Furthermore, the research and knowledge-transfer experience highlighted the value of partnership amongst Northern and Southern researchers in terms of sharing resources, experiences and knowledge.
Resumo:
The misuse of Personal Protective Equipment results in health risk among smallholders in developing countries, and education is often proposed to promote safer practices. However, evidence point to limited effects of education. This paper presents a System Dynamics model which allows the identification of risk-minimizing policies for behavioural change. The model is based on the IAC framework and survey data. It represents farmers' decision-making from an agent-oriented standpoint. The most successful intervention strategy was the one which intervened in the long term, targeted key stocks in the systems and was diversified. However, the results suggest that, under these conditions, no policy is able to trigger a self sustaining behavioural change. Two implementation approaches were suggested by experts. One, based on constant social control, corresponds to a change of the current model's parameters. The other, based on participation, would lead farmers to new thinking, i.e. changes in their decision-making structure.
Resumo:
We investigated commensalism of water use among annual shallow-rooted and perennial deep-rooted pasture legumes by examining the effect of hydraulic lift by Cullen pallidum (N.T.Burb.) J.W.Grimes and Medicago sativa on growth, survival and nutrient uptake of Trifolium subterraneum L. A vertically split-root design allowed separate control of soil water in top and bottom soil. Thirty-five days after watering ceased in the top tube, but soil remained at field capacity in the bottom tube, an increase in shallow soil water content by hydraulic lift was 5.6 and 5.9 g kg−1 soil overnight for C. pallidum and M. sativa, respectively. Trifolium subterraneum in this treatment maintained higher leaf water potentials (with M. sativa) or exhibited a slower decline (with C. pallidum) than without companion perennial plants; and shoot biomass of T. subterraneum was 56% (with C. pallidum) and 67% (with M. sativa) of that when both top and bottom tubes were at field capacity. Uptake of rubidium (a potassium analog) and phosphorus by T. subterraneum was not facilitated by hydraulic lift. Interestingly, phosphorus content was threefold greater, and shoot biomass 1.5–3.3-fold greater when T. subterraneum was interplanted with C. pallidum compared with M. sativa, although dry weight of C. pallidum was much greater than that of M. sativa. This study showed that interplanting with deep-rooted perennial legumes has benefited the survival of T. subterraneum.
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.
Resumo:
We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.
Resumo:
A ferrugem asiática da soja, causada pelo fungo Phakopsora pachyrhizi, é considerada a principal doença da soja, e, portanto, a escolha e o uso adequado dos equipamentos de pulverização são essenciais para seu controle. O objetivo deste trabalho foi avaliar o desempenho de diferentes equipamentos de pulverização aérea para o controle curativo da ferrugem da soja, utilizando o fungicida Impact 125 SC (flutriafol) a 0,5 L p c ha-1. Os seguintes tratamentos foram avaliados: atomizador Micronair AU 5000 (10 L ha-1 com óleo e 20 L ha-1 sem óleo na calda); atomizador Stol ARD (10 e 20 L ha-1 ambos com óleo) e o sistema eletrostático Spectrum (10 L ha-1 sem óleo a 64 e 71% de umidade relativa). Utilizou-se óleo de algodão (1,0 L ha-1) acrescido de emulsificante BR 455 a 0,025 L ha-1. O ensaio foi realizado na terceira aplicação de fungicidas, quando foram analisadas quatro repetições nas áreas aplicadas e quatro testemunhas não aplicadas para cada tratamento, avaliando-se a severidade da ferrugem, os depósitos de flutriafol nas folhas de soja e o percentual de redução de ferrugem. A análise dos depósitos nas folhas mostrou que não houve diferenças significativas entre os tratamentos. Os melhores controles da ferrugem foram obtidos com os tratamentos Micronair (10 L ha-1 com óleo), Stol (20 L ha-1 com óleo) e o sistema elestrostático (10 L ha-1) com a menor umidade relativa do ar (64 %).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.
Resumo:
The purpose of this study was to evaluate the antimicrobial effectiveness and dental applications of ozonated water generated by portable equipment (0.667 mg/L). Total elimination of C. albicans, E. coli and S. mutans planktonic cells was observed after 5 min. Reduction in the number of viable cells of biofilms formed on acrylic resin was observed for C. albicans, S. mutans and E. coli. The same effect was observed on biofilms of E. coli, S. aureus, S. mutans and C. albicans formed on stainless steel. Ozonated water was effective for the disinfection of experimentally contaminated toothbrushes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A model for preventive control in electrical systems is presented, taking into account the dynamic aspects of the network. Among these aspects, the effects provoked by perturbations which cause oscillations in synchronous machine angles (transient stability), such as electric equipment outages and short circuits, are presented. The energy function is used to measure the stability of the system using a procedure defined as the security margin. The control actions employed are load shedding and generation reallocation. An application of the methodology to a system located in southern Brazil, which is composed of 10 synchronous machines, 45 busses, and 72 transmission lines. The results confirm the theoretical studies.