987 resultados para hybrid identification
Resumo:
Thymic CD4(+)CD25(+) cells play an important role in immune regulation and are continuously developed in the thymus as an independent lineage. How these cells are generated, what are their multiple pathways of suppressive activity and which are their specific markers are questions that remain unanswered. To identify molecules involved in the function and development of human CD4(+)CD25(+) T regulatory cells we targeted thymic CD4(+)CD25(+) cells by peptide phage display. A phage library containing random peptides was screened ex vivo for binding to human thymic CD4(+)CD25(+) T cells. After four rounds of selection on CD4(+)CD25(+) enriched populations of thymocytes, we sequenced several phage displayed peptides and selected one with identity to the Vitamin D Receptor (VDR). We confirmed the binding of the VDR phage to active Vitamin D in vitro, as well as the higher expression of VDR in CD4(+)CD25(+) cells. We suggest that differential expression of VDR on natural Tregs may be related to the relevance of Vitamin D in function and ontogeny of these cells.
Resumo:
Chagas disease is still a major public health problem in Latin America. Its causative agent, Trypanosoma cruzi, can be typed into three major groups, T. cruzi I, T. cruzi II and hybrids. These groups each have specific genetic characteristics and epidemiological distributions. Several highly virulent strains are found in the hybrid group; their origin is still a matter of debate. The null hypothesis is that the hybrids are of polyphyletic origin, evolving independently from various hybridization events. The alternative hypothesis is that all extant hybrid strains originated from a single hybridization event. We sequenced both alleles of genes encoding EF-1 alpha, actin and SSU rDNA of 26 T. cruzi strains and DHFR-TS and TR of 12 strains. This information was used for network genealogy analysis and Bayesian phylogenies. We found T. cruzi I and T. cruzi II to be monophyletic and that all hybrids had different combinations of T. cruzi I and T. cruzi II haplotypes plus hybrid-specific haplotypes. Bootstrap values (networks) and posterior probabilities (Bayesian phylogenies) of clades supporting the monophyly of hybrids were far below the 95% confidence interval, indicating that the hybrid group is polyphyletic. We hypothesize that T. cruzi I and T. cruzi II are two different species and that the hybrids are extant representatives of independent events of genome hybridization, which sporadically have sufficient fitness to impact on the epidemiology of Chagas disease.
Resumo:
Layer-by-layer (LBL) assembly was used to combine crystalline rod-like nanoparticles obtained from a vegetable source, cellulose nanowhiskers (CNWs), with collagen, the main component of skin and connective tissue found exclusively in animals. The film growth of the multilayered collagen/CNW was monitored by UV-Vis spectroscopy and ellipsometry measurements, whereas the film morphology and surface roughness were characterized by SEM and AFM. UV-Vis spectra showed the deposition of the same amount of collagen, 5 mg m(-2), in each dipping cycle. Ellipsometry data showed an increment in thickness with the number of layers, and the average thickness of each bilayer was found to be 8.6 nm. The multilayered bio-based nanocomposites were formed by single layers of densely packed CNWs adsorbed on top of each thin collagen layer where the hydrogen bonding between collagen amide groups and OH groups of the CNWs plays a mandatory role in the build-up of the thin films. The approach used in this work represents a potential strategy to mimic the characteristics of natural extracellular matrix (ECM) which can be used for applications in the biomedical field.
Resumo:
Organic-inorganic hybrid materials can be prepared dispersing organic species into well-defined inorganic nanoblocks. This paper describes the immobilization of natural dyes from the extract of the Brazilian acai-fruit into two types of layered hexaniobate precursors derived from H(2)K(2)Nb(6)O(17): (i) colloidal dispersion of niobate exfoliated nanoparticles and (ii) niobate pre-intercalated with tetraethylammonium cations (TEA(+)). The restacking of exfoliated particles in the presence of acai anthocyanins promotes their intercalation and produces stacked layers showing large basal spacing (ca. 50 angstrom). The TEA(+) pre-intercalated niobate provides particles with lower content of dye species than the exfoliated precursor but with higher degree of organization and regularity according to X-ray diffraction data and images obtained by electron microscopies. Vibrational (FTIR and Raman) and (13)C NMR spectroscopies indicate the presence of flavylium cations in the hybrid materials and spectral profiles characteristic of glycosylated anthocyanidins. According to thermal analysis results, the purplish hybrids materials are more stable than the free acai-dyes. One hybrid sample was heated under air up to 170 degrees C and maintained at this temperature for 240 min. No weight loss events were observed and the sample retained its original color, indicating that the intercalation of anthocyanin into hexaniobate increases its thermal stability. Considering the structural, chemical, optical and thermal properties of the synthesized hybrid materials, they might be good candidates to be investigated for future specialized applications.
Resumo:
Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.
Resumo:
A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.
Resumo:
Phaethornis longuemareus aethopyga was described by John T. Zimmer in 1950 and treated as a valid subspecies until it was proposed that the three known specimens were hybrids between R ruber and P. rupurumii amazonicus. On the basis of some recently collected specimens, we reevaluated the validity of P. l. aethopyga. Despite showing some differences related to age and sex, all specimens agree in the general plumage pattern and are fully diagnosable when compared with any other taxon of the genus. The hypothesis of a hybrid origin becomes unsustainable when one notes that (1) P. l. aethopyga has characters that are unique and absent in the purported parental species, such as the white outer margins at the base of the rectrices; and (2) P. l. aethopyga occurs far from the distribution of one of the alleged parental species. Furthermore, field data show that P. l. aethopyga has attributes typical of a valid and independent taxon, such as lekking behavior. Therefore, given its overall diagnosis, P. aethopyga could at least be treated as a phylogenetic species. Yet its morphological and vocal distinctiveness with respect to other Phaethornis spp. in the ""Pygmornis group"" is greater than that observed between some species pairs traditionally regarded as separate biological species within the group, which supports its recognition as a species under the biological species concept. Received 13 July 2008, accepted 9 March 2009.
Resumo:
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.
Resumo:
Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Biodiesel is an important new alternative fuel. The feedstock used and the process employed determines whether it fulfills the required specifications. In this work, an identification method is proposed using an electronic nose (e-nose). Four samples of biodiesel from different sources and one of petrodiesel were analyzed and well-recognized by the e-nose. Both pure biodiesel and B20 blends were studied. Furthermore, an innovative semiquantitative method is proposed on the basis of the smellprints correlated by a feed-forward artificial neural network. The results have demonstrated that the e-nose can be used to identify the biodiesel source and as a preliminary quantitative assay in place of expensive equipment.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with kappa-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HA(app)) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g(-1) of gel for GLU, 7.76 mg g(-1) of gel for GLY, and 7.65 mg g(-1) of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g(-1) of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.
Resumo:
Appropriate pain assessment is very important for managing chronic pain. Given the cultural differences in verbally expressing pain and in psychosocial problems, specific tools are needed. The goal of this study was to identify and validate Brazilian pain descriptors. A purposive sample of health professionals and chronic pain patients was recruited. Four studies were conducted using direct and indirect psychophysical methods: category estimation, magnitude estimation, and magnitude estimation and tine-length. Results showed the descriptors which best describe chronic pain in Brazilian culture and demonstrated that there is not a significant correlation between patients and health professionals and that the psychophysical scale of judgment of pain descriptors is valid, stable, and consistent. Results reinforced that the translations of word descriptors and research tools into another language may be inappropriate, owing to differences in perception and communication and the inadequacy of exact translations to reflect the intended meaning. Given the complexity of the chronic pain, personal suffering involved, and the need for accurate assessment of chronic pain using descriptors stemming from Brazilian culture and language, it is essential to investigate the most adequate words to describe chronic pain. Although it requires more refinement, the Brazilian chronic pain descriptors can be used further to develop a multidimensional pain assessment tool that is culturally sensitive. (C) 2009 by the American Society for Pain Management Nursing
Resumo:
Objective: This investigation aimed to identify and analyze the general and specific competencies of nurses in the primary health care practice of Brazil. Design: The Delphi Technique was used as the method of study. Sample: 2 groups of participants were selected: One contained primary health care nurses (n=52) and the other specialists (n=57), including public health nurses and public or community health faculty. Measurements: 3 questionnaires were developed for the study. The first asked participants to indicate general and specific competencies, which were compiled into a list for each group. A Likert scale of 1-5 was added to these 2 lists in the second and third questionnaires. A consensus criterion of 75% for score 4 or 5 was adopted. Results: In the nurses` group, 17 general and 8 specific competencies reached the consensus criterion; 19 general and 9 specific competencies reached the criterion in the specialists` group. These competencies were classified into 10 domains: professional values, communication, teamwork, management, community-oriented, health promotion, problem solving, health care, and education and basic public health sciences. Conclusions: These competencies reflect Brazilian health policy and constitute a reference for health professional practice and education.
Resumo:
This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.