491 resultados para hurricane evacuation
Resumo:
This Evacuation Preparedness Assessment Workbook (EPAW) is a tool to assess the level of preparedness of Government Organisations (GOs) for the mass evacuation of their public. It has its origins in the results of a three-year, EU-funded research project called Evacuation Preparedness by Government Organisations (ERGO) which sought to research and strengthen the preparedness activities for the evacuation of cities, regions or even countries. This EPAW presents a list of tasks to be carried out at the different phases of evacuation preparedness. It also provides an assessment facility to evaluate how much progress GOs have made against each task, as well as indications of standard and best practices for each task. A brief background to the need for evacuation, the ERGO project and the development of the workbook is given next. After this, the application process of the workbook is explained and illustrated with an example.
Resumo:
Large-scale disasters are constantly occurring around the world, and in many cases evacuation of regions of city is needed. ‘Operational Research/Management Science’ (OR/MS) has been widely used in emergency planning for over five decades. Warning dissemination, evacuee transportation and shelter management are three ‘Evacuation Support Functions’ (ESF) generic to many hazards. This thesis has adopted a case study approach to illustrate the importance of integrated approach of evacuation planning and particularly the role of OR/MS models. In the warning dissemination phase, uncertainty in the household’s behaviour as ‘warning informants’ has been investigated along with uncertainties in the warning system. An agentbased model (ABM) was developed for ESF-1 with households as agents and ‘warning informants’ behaviour as the agent behaviour. The model was used to study warning dissemination effectiveness under various conditions of the official channel. In the transportation phase, uncertainties in the household’s behaviour such as departure time (a function of ESF-1), means of transport and destination have been. Households could evacuate as pedestrians, using car or evacuation buses. An ABM was developed to study the evacuation performance (measured in evacuation travel time). In this thesis, a holistic approach for planning the public evacuation shelters called ‘Shelter Information Management System’ (SIMS) has been developed. A generic allocation framework of was developed to available shelter capacity to the shelter demand by considering the evacuation travel time. This was formulated using integer programming. In the sheltering phase, the uncertainty in household shelter choices (either nearest/allocated/convenient) has been studied for its impact on allocation policies using sensitivity analyses. Using analyses from the models and detailed examination of household states from ‘warning to safety’, it was found that the three ESFs though sequential in time, however have lot of interdependencies from the perspective of evacuation planning. This thesis has illustrated an OR/MS based integrated approach including and beyond single ESF preparedness. The developed approach will help in understanding the inter-linkages of the three evacuation phases and preparing a multi-agency-based evacuation planning evacuation
Resumo:
Timely warning of the public during large scale emergencies is essential to ensure safety and save lives. This ongoing study proposes an agent-based simulation model to simulate the warning message dissemination among the public considering both official channels and unofficial channels The proposed model was developed in NetLogo software for a hypothetical area, and requires input parameters such as effectiveness of each official source (%), estimated time to begin informing others, estimated time to inform others and estimated percentage of people (who do not relay the message). This paper demonstrates a means of factoring the behaviour of the public as informants into estimating the effectiveness of warningdissemination during large scale emergencies. The model provides a tool for the practitioner to test the potential impact of the informal channels on the overall warning time and sensitivity of the modelling parameters. The tool would help the practitioners to persuade evacuees to disseminate the warning message informing others similar to the ’Run to thy neighbour campaign conducted by the Red cross.
Resumo:
DUE TO INCOMPLETE PAPERWORK, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
As more of the economy moves from traditional manufacturing to the service sector, the nature of work is becoming less tangible and thus, the representation of human behaviour in models is becoming more important. Representing human behaviour and decision making in models is challenging, both in terms of capturing the essence of the processes, and also the way that those behaviours and decisions are or can be represented in the models themselves. In order to advance understanding in this area, a useful first step is to evaluate and start to classify the various types of behaviour and decision making that are required to be modelled. This talk will attempt to set out and provide an initial classification of the different types of behaviour and decision making that a modeller might want to represent in a model. Then, it will be useful to start to assess the main methods of simulation in terms of their capability in representing these various aspects. The three main simulation methods, System Dynamics, Agent Based Modelling and Discrete Event Simulation all achieve this to varying degrees. There is some evidence that all three methods can, within limits, represent the key aspects of the system being modelled. The three simulation approaches are then assessed for their suitability in modelling these various aspects. Illustration of behavioural modelling will be provided from cases in supply chain management, evacuation modelling and rail disruption.
Resumo:
This thesis is concerned with understanding how Emergency Management Agencies (EMAs) influence public preparedness for mass evacuation across seven countries. Due to the lack of cross-national research (Tierney et al., 2001), there is a lack of knowledge on EMAs perspectives and approaches to the governance of public preparedness. This thesis seeks to address this gap through cross-national research that explores and contributes towards understanding the governance of public preparedness. The research draws upon the risk communication (Wood et al., 2011; Tierney et al., 2001) social marketing (Marshall et al., 2007; Kotler and Lee, 2008; Ramaprasad, 2005), risk governance (Walker et al., 2010, 2013; Kuhlicke et al., 2011; IRGC, 2005, 2007; Renn et al., 2011; Klinke and Renn, 2012), risk society (Beck, 1992, 1999, 2002) and governmentality (Foucault, 1978, 2003, 2009) literature to explain this governance and how EMAs responsibilize the public for their preparedness. EMAs from seven countries (Belgium, Denmark, Germany, Iceland, Japan, Sweden, the United Kingdom) explain how they prepare their public for mass evacuation in response to different types of risk. A cross-national (Hantrais, 1999) interpretive research approach, using qualitative methods including semi-structured interviews, documents and observation, was used to collect data. The data analysis process (Miles and Huberman, 1999) identified how the concepts of risk, knowledge and responsibility are critical for theorising how EMAs influence public preparedness for mass evacuation. The key findings grounded in these concepts include: - Theoretically, risk is multi-functional in the governance of public preparedness. It regulates behaviour, enables surveillance and acts as a technique of exclusion. - EMAs knowledge and how this influenced their assessment of risk, together with how they share the responsibility for public preparedness across institutions and the public, are key to the governance of public preparedness for mass evacuation. This resulted in a form of public segmentation common to all countries, whereby the public were prepared unequally. - EMAs use their prior knowledge and assessments of risk to target public preparedness in response to particular known hazards. However, this strategy places the non-targeted public at greater risk in relation to unknown hazards, such as a man-made disaster. - A cross-national conceptual framework of four distinctive governance practices (exclusionary, informing, involving and influencing) are utilised to influence public preparedness. - The uncertainty associated with particular types of risk limits the application of social marketing as a strategy for influencing the public to take responsibility and can potentially increase the risk to the public.
Resumo:
Emergency managers are faced with critical evacuation decisions. These decisions must balance conflicting objectives as well as high levels of uncertainty. Multi-Attribute Utility Theory (MAUT) provides a framework through which objective trade-offs can be analyzed to make optimal evacuation decisions. This paper is the result of data gathered during the European Commission Project, Evacuation Responsiveness by Government Organizations (ERGO) and outlines a preliminary decision model for the evacuation decision. The illustrative model identifies levels of risk at which point evacuation actions should be taken by emergency managers in a storm surge scenario with forecasts at 12 and 9 hour intervals. The results illustrate how differences in forecast precision affect the optimal evacuation decision. Additional uses for this decision model are also discussed along with improvements to the model through future ERGO data-gathering.
Resumo:
This thesis chronicles the design and implementation of a Internet/Intranet and database based application for the quality control of hurricane surface wind observations. A quality control session consists of selecting desired observation types to be viewed and determining a storm track based time window for viewing the data. All observations of the selected types are then plotted in a storm relative view for the chosen time window and geography is positioned for the storm-center time about which an objective analysis can be performed. Users then make decisions about data validity through visual nearest-neighbor comparison and inspection. The project employed an Object Oriented iterative development method from beginning to end and its implementation primarily features the Java programming language. ^
Resumo:
Before dawn on August 24, 1992, Hurricane Andrew smashed into south Florida, particularly southern Dade County, and soon become the costliest natural disaster in U.S. history. Andrew's impacts quickly overwhelmed local and state emergency response capabilities and eventually required major federal assistance, including regular military units. While the social and economic impacts of Hurricane Andrew are relatively well researched, much less attention has been given to its possible political effects. ^ Focusing on incumbent officeholders at three levels (municipal, state legislative, and statewide) who stood for reelection after Hurricane Andrew, this study seeks to determine whether they experienced any political effects from Andrew. That is, this study explores the possible interaction between the famous “incumbency advantage” and an “extreme event,” in this case a natural disaster. The specific foci were (1) campaigns and campaigning (a research process that included 43 personal interviews), and (2) election results before and after the event. ^ Given well-documented response problems, the working hypothesis was that incumbents experienced largely negative political fallout from the disaster. The null hypothesis was that incumbents saw no net political effects, but the reverse hypothesis was also considered: incumbents benefited politically from the event. ^ In the end, this study found that although the election process was physically disrupted, especially in south Dade County, the disaster largely reinforced the incumbency advantage. More specifically, the aftermath of Hurricane Andrew allowed most incumbent officeholders to (1) enhance constituency service, (2) associate themselves with the flow of external assistance, (3) achieve major personal visibility and media coverage, and yet (4) appear non-political or at least above normal politics. Overall, this combination allowed incumbents to very effectively “campaign without campaigning,” a point borne out by post-Andrew election results. ^
Resumo:
Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^
Resumo:
An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.