934 resultados para humans
Resumo:
A comparative study was made between sympatric isolates of Schistosoma mansoni: one from a wild rodent (R) Nectomys squamipes and another one from humans (H) isolated from a low endemic schistosomiasis transmission area in Brazil. Our purpose was to detect differences between them concerning chaetotaxy (number and pattern of distribution of the argentophilic papillae) of the cercariae by means of silver impregnation. No significant difference (x > 0.05) between isolates was noted. Nevertheless, a significant difference (x < 0.05) was observed in the cercarial index (ratio of the distance between the first and the second preacetabular papillae and the distance between the first and the second dorsal preacetabular papillae) of male and female cercariae in both isolates. Males presented a greater cercarial index than females. By means of multivariate analysis, male cercariae were distinguished from female cercariae through the following characteristics: average number of dorsal papillae on the right quadrant, average number of ventral middle papillae on the right quadrant (H isolate) and average number of dorsal middle papillae on the left quadrant (R isolate). The results suggest that R and H isolates belong to the same population that could complete its life cycle in rodent-snail-rodent fashion.
Resumo:
Working memory, the ability to store and simultaneously manipulate information, is affected in several neuropsychiatric disorders which lead to severe cognitive and functional deficits. An electrophysiological marker for this process could help identify early cerebral function abnormalities. In subjects performing working memory-specific n-back tasks, event-related potential analysis revealed a positive-negative waveform (PNwm) component modulated in amplitude by working memory load. It occurs in the expected time range for this process, 140-280 ms after stimulus onset, superimposed on the classical P200 and N200 components. Independent Component Analysis extracted two functional components with latencies and topographical scalp distributions similar to the PNwm. Our results imply that the PNwm represents a new electrophysiological index for working memory load in humans.
Resumo:
The pharmacokinetic determinants of successful antibiotic prophylaxis of endocarditis are not precisely known. Differences in half-lives of antibiotics between animals and humans preclude extrapolation of animal results to human situations. To overcome this limitation, we have mimicked in rats the amoxicillin kinetics in humans following a 3-g oral dose (as often used for prophylaxis of endocarditis) by delivering the drug through a computerized pump. Rats with catheter-induced vegetations were challenged with either of two strains of antibiotic-tolerant viridans group streptococci. Antibiotics were given either through the pump (to simulate the whole kinetic profile during prophylaxis in humans) or as an intravenous bolus which imitated only the peak level of amoxicillin (18 mg/liter) in human serum. Prophylaxis by intravenous bolus was inoculum dependent and afforded a limited protection only in rats challenged with the minimum inoculum size infecting > or = 90% of untreated controls. In contrast, simulation of kinetics in humans significantly protected animals challenged with 10 to 100 times the inoculum of either of the test organisms infecting > or = 90% of untreated controls. Thus, simulation of the profiles of amoxicillin prophylaxis in human serum was more efficacious than mere imitation of the transient peak level in rats. This confirms previous studies suggesting that the duration for which the serum amoxicillin level remained detectable (not only the magnitude of the peak) was an important parameter in successful prophylaxis of endocarditis. The results also suggest that single-dose prophylaxis with 3 g of amoxicillin in humans might be more effective than predicted by conventional animal models in which only peak levels of antibiotic in human serum were stimulated.
Resumo:
The nematode parasite Ascaris lumbricoides infects the digestive tracts of over 1.4 billion people worldwide, and its sister species, Ascaris suum, has infected a countless number of domesticated and feral pigs. It is generally thought that the putative ancestor to these worms infected either humans or pigs, but with the advent of domestication, they had ample opportunity to jump to a new host and subsequently specialize and evolve into a new species. While nuclear DNA markers decisively separate the two populations, mitochondrial sequences reveal that three major haplotypes are found in A. suum and in A. lumbricoides, indicating either occasional hybridization, causing introgression of gene trees, or retention of polymorphism dating back to the original ancestral species. This article provides an illustration of the combined contribution of parasitology, archaeoparasitology, genetics and paleogenetics to the history of ascariasis. We specifically investigate the molecular history of ascariasis in humans by sequencing DNA from the eggs of Ascaris found among ancient archeological remains. The findings of this paleogenetic survey will explain whether the three mitochondrial haplotypes result from recent hybridization and introgression, due to intensive human-pig interaction, or whether their co-occurrence predates pig husbandry, perhaps dating back to the common ancestor. We hope to show how human-pig interaction has shaped the recent evolutionary history of this disease, perhaps revealing the identity of the ancestral host.
Resumo:
During an excavation of a site of the corded ware culture in the Saale-Unstrut-Valley (ca. 3000 BC) in Germany, a soil sample from the pelvis of a human skeleton was studied under palaeoparasitological aspects. Eggs of the trematode Fasciola hepatica and of the nematode genus Capillaria were found. This is the first case of a direct association of a F. hepatica-infestation to both a prehistoric human skeleton and domesticated animal remains. Sheep and cattle bones were present at the same site and F. hepatica eggs were found in bovine samples. This strongly points toward an existing infection cycle, involving humans as a final host.
Resumo:
Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.
Resumo:
The purpose of this study was to investigate astrocytic oxidative metabolism using 1-(11)C-acetate. 1-(11)C-acetate kinetics were evaluated in the rat somatosensory cortex using a beta-scintillator during different manipulations (test-retest, infraorbital nerve stimulation, and administration of acetazolamide or dichloroacetate). In humans a visual activation paradigm was used and kinetics were measured with positron emission tomography. Data were analyzed using a one-tissue compartment model. The following features supported the hypothesis that washout of radiolabel (k(2)) is because of (11)C-CO(2) and therefore related to oxygen consumption (CMRO(2)): (1) the onset of (11)C washout was delayed; (2)k(2) was not affected by acetazolamide-induced blood flow increase; (3)k(2) demonstrated a significant increase during stimulation in rats (from 0.014+/-0.007 to 0.027+/-0.006 per minute) and humans (from 0.016+/-0.010 to 0.026+/-0.006 per minute); and (4) dichloroacetate led to a substantial decrease of k(2). In the test-retest experiments K(1) and k(2) were very stable. In summary, 1-(11)C-acetate seems a promising tracer to investigate astrocytic oxidative metabolism in vivo. If the washout rate indeed represents the production of (11)C-CO(2), then its increase during stimulation would point to a substantially higher astrocytic oxidative metabolism during brain activation. However, the quantitative relationship between k(2) and CMRO(2) needs to be determined in future experiments.
Resumo:
BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.
Resumo:
There is a need to measure energy expenditure in man for a period of 24 h or even several days. The respiration chamber offers a unique opportunity to reach this goal. It allows the study of energy and nutrient balance; from the latter, acute changes in body composition can be obtained. The respiration chamber built in Lausanne is an air-tight room (5 m long, 2.5 m wide, and 2.5 m high) which forms an open circuit ventilated indirect calorimeter. The physical activity of the subject inside the chamber is continuously measured using a radar system based on the Doppler effect. Energy expenditure of obese and lean women was continuously measured over 24 h and diet-induced thermogenesis was assessed by using an approach which allows one to subtract the energy expended for physical activity from the total energy expenditure. Expressed in absolute terms, total energy expenditure was more elevated in the obese than in the lean controls. Basal metabolic rate was also higher in the obese than in the controls, but diet-induced thermogenesis was found to be blunted in the obese. In a second study, the effect of changing the carbohydrate/lipid content of the diet on fuel utilization was assessed in young healthy subjects with the respiration chamber. After a 7-day adaptation to a high-carbohydrate low-fat diet, the fuel mixture oxidized matched the change in nutrient intake. A last example of the use of the respiration chamber is the thermogenic response and changes in body composition due to a 7-day overfeeding of carbohydrate. Diet-induced thermogenesis was found to be 27%; on the last day of overfeeding, carbohydrate balance was reached by oxidation of 50% of the carbohydrate intake, the remaining 50% being converted into lipid.
Resumo:
PURPOSE: The purposes of this study were to (1) develop a high-resolution 3-T magnetic resonance angiography (MRA) technique with an in-plane resolution approximate to that of multidetector coronary computed tomography (MDCT) and a voxel size of 0.35 × 0.35 × 1.5 mm³ and to (2) investigate the image quality of this technique in healthy participants and preliminarily in patients with known coronary artery disease (CAD). MATERIALS AND METHODS: A 3-T coronary MRA technique optimized for an image acquisition voxel as small as 0.35 × 0.35 × 1.5 mm³ (high-resolution coronary MRA [HRC]) was implemented and the coronary arteries of 22 participants were imaged. These included 11 healthy participants (average age, 28.5 years; 5 men) and 11 participants with CAD (average age, 52.9 years; 5 women) as identified on MDCT. In addition, the 11 healthy participants were imaged using a method with a more common spatial resolution of 0.7 × 1 × 3 mm³ (regular-resolution coronary MRA [RRC]). Qualitative and quantitative comparisons were made between the 2 MRA techniques. RESULTS: Normal vessels and CAD lesions were successfully depicted at 350 × 350 μm² in-plane resolution with adequate signal-to-noise ratio (SNR) and contrast-to-noise ratio. The CAD findings were consistent among MDCT and HRC. The HRC showed a 47% improvement in sharpness despite a reduction in SNR (by 72%) and in contrast-to-noise ratio (by 86%) compared with the regular-resolution coronary MRA. CONCLUSION: This study, as a first step toward substantial improvement in the resolution of coronary MRA, demonstrates the feasibility of obtaining at 3 T a spatial resolution that approximates that of MDCT. The acquisition in-plane pixel dimensions are as small as 350 × 350 μm² with a 1.5-mm slice thickness. Although SNR is lower, the images have improved sharpness, resulting in image quality that allows qualitative identification of disease sites on MRA consistent with MDCT.
Resumo:
The number of physical activity measures and indexes used in the human literature is large and may result in some difficulty for the average investigator to choose the most appropriate measure. Accordingly, this review is intended to provide information on the utility and limitations of the various measures. Its primary focus is the objective assessment of free-living physical activity in humans based on physiological and biomechanical methods. The physical activity measures have been classified into three categories: Measures based on energy expenditure or oxygen uptake, such as activity energy expenditure, activity-related time equivalent, physical activity level, physical activity ratio, metabolic equivalent, and a new index of potential interest, daytime physical activity level. Measures based on heart rate monitoring, such as net heart rate, physical activity ratio heart rate, physical activity level heart rate, activity-related time equivalent, and daytime physical activity level heart rate. Measures based on whole-body accelerometry (counts/U time). Quantification of the velocity and duration of displacement in outdoor conditions by satellites using the Differential Global Positioning System may constitute a surrogate for physical activity, because walking is the primary activity of man in free-living conditions. A general outline of the measures and indexes described above is presented in tabular form, along with their respective definition, usual applications, advantages, and shortcomings. A practical example is given with typical values in obese and non-obese subjects. The various factors to be considered in the selection of physical activity methods include experimental goals, sample size, budget, cultural and social/environmental factors, physical burden for the subject, and statistical factors, such as accuracy and precision. It is concluded that no single current technique is able to quantify all aspects of physical activity under free-living conditions, requiring the use of complementary methods. In the future, physical activity sensors, which are of low-cost, small-sized, and convenient for subjects, investigators, and clinicians, are needed to reliably monitor, during extended periods in free-living situations, small changes in movements and grade as well as duration and intensity of typical physical activities.
Biological embedding of early life exposures and disease risk in humans: a role for DNA methylation.
Resumo:
BACKGROUND: Following wider acceptance of "the thrifty phenotype" hypothesis and the convincing evidence that early life exposures can influence adult health even decades after the exposure, much interest has been placed on the mechanisms through which early life exposures become biologically embedded. METHODS: In this review, we summarize the current literature regarding biological embedding of early life experiences. To this end we conducted a literature search to identify studies investigating early life exposures in relation to DNA methylation changes. In addition, we summarize the challenges faced in investigations of epigenetic effects, stemming from the peculiarities of this emergent and complex field. A proper systematic review and meta-analyses were not feasible given the nature of the evidence. RESULTS: We identified 7 studies on early life socioeconomic circumstances, 10 studies on childhood obesity, and 6 studies on early life nutrition all relating to DNA methylation changes that met the stipulated inclusion criteria. The pool of evidence gathered, albeit small, favours a role of epigenetics and DNA methylation in biological embedding, but replication of findings, multiple comparison corrections, publication bias, and causality are concerns remaining to be addressed in future investigations. CONCLUSIONS: Based on these results, we hypothesize that epigenetics, in particular DNA methylation, is a plausible mechanism through which early life exposures are biologically embedded. This review describes the current status of the field and acts as a stepping stone for future, better designed investigations on how early life exposures might become biologically embedded through epigenetic effects. This article is protected by copyright. All rights reserved.
Resumo:
OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.
Resumo:
Abstract : Fructose is a simple sugar, whose consumption has increased over the past decades. In rodents, a high-fructose diet (HFrD) induces several features of the metabolic syndrome. The aim of the studies included in this thesis was to investigate the metabolic effects of a HFrD in humans, with a focus on insulin sensitivity and ectopic fat deposition. Moreover, we addressed the question whether these effects may differ between individuals according to gender and the genetic background. The first study was designed to evaluate the impact of a 4-week HFrD on insulin sensitivity and lipid metabolism in 7 healthy men. Insulin sensitivity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) contents were measured before and after 1 and 4 weeks of HFrD (1.5 g fructose/kg body weight/day). Insulin sensitivity was assessed by a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H-magnetic resonance spectroscopy (MRS). Fructose caused significant (P<0.05) increases in fasting plasma concentrations of triacylglycerol (TG) (+36%), VLDL-TG (+72%) and glucose (+6%) without any change in body weight, IHCL, IMCL, and insulin sensitivity. In the second study, muscle biopsies were taken from five of these healthy male subjects before and after 4 weeks of HFrD. mRNA concentrations of 18 genes involved in lipid and carbohydrate metabolism were quantified by real-time quantitative PCR. We found that a 4-week HFrD increased the expression of genes involved in lipid synthesis, while it decreased those involved in insulin sensitivity and lipid oxidation; these molecular changes maybe early markers of insulin resistance and altered lipid metabolism. The third study aimed at delineating whether male and females equally respond to a HFrD. For this purpose, higher doses of fructose (twice the dose of the previous study) were provided to 8 healthy young males and 8 healthy young females over 6 days. HFrD significantly increased fasting TG in males (+71 %), whereas this increase was markedly blunted in females (+16%). Males also developed hepatic insulin resistance, characterized by increased hepatic glucose output (+12%), and showed higher alanine aminotransferase concentration (+38%), but none of these effect was observed in females. This study suggests that short-term HFrD leads to hypertriglyceridemia and hepatic insulin resistance in men, but premenopausal women seem protected against these effects. Finally, the fourth study investigated whether healthy offspring of type 2 diabetic patients (OffT2D), a subgroup of individuals prone to metabolic disorders due to their genetic background, may have exacerbated response to HFrD. Eight healthy males (Ctrl) and 16 OffT2D received a HFrD and isocaloric diet in a randomized order. In both groups, HFrD significantly increased IHCL (Ctrl: +76%; OffT2D: +79%) and fasting plasma VLDL-TG (Ctrl: +51 %; OffT2D: +110%). In absolute values, these increments were significantly higher in OffT2D, suggesting that these individuals may be more prone to developing metabolic disorders when challenged by high fructose intake. In order to better delineate the specific effects of fructose vs the hypercaloric energy content, we repeated the complete metabolic investigations after an isocaloric high glucose diet in four of the eight Ctrl volunteers. After a high glucose diet, TG and IHCL concentrations remained similar to the control values, in contrast to the marked increases observed after the HFrD. In conclusion, the studies included in this thesis provided novel insights into the metabolic effects of fructose in humans. They showed that fructose may rapidly increase fasting VLDL-TG, IHCL and lead to hepatic insulin resistance; these effects seem specific to fructose, and potential mechanisms may involve both stimulation of hepatic de novo lipogenesis and decreased lipid oxidation. Moreover, the results suggest that women seem protected against such deleterious effects, while OffT2D displayed exacerbated response. Résumé : Le fructose est un sucre simple, dont la consommation a augmenté durant les dernières décennies. Dans les modèles animaux, un régime riche en fructose (RRFru) peut induire plusieurs composantes du syndrome métabolique. Le but de cette thèse était d'étudier les effets d'un régime riche en fructose sur la sensibilité à l'insuline et la déposition de lipides ectopiques chez l'humain, et si ces effets variaient selon le genre ou le background génétique. La première étude avait pour but d'évaluer l'effet d'un RRFru d'une durée de 4 semaines sur la sensibilité à l'insuline et le métabolisme des lipides chez des hommes sains. La sensibilité à l'insuline, les lipides intrahépatiques (IHCL) et intramusculaires (IMCL) ont été mesurés avant, et après 1 et 4 semaines du RRFru (1.5 g fructose/kg/jour). La sensibilité à l'insuline a été déterminée par un clamp hyperinsulinémique euglycémique, et les IHCL/IMCL par spectroscopie à résonnance magnétique. Le fructose a augmenté les concentrations plasmatiques à jeun des VLDL- triglycérides (TG) (+72%) et de glucose (+6%), sans induire de changement au niveau de la sensibilité à l'insuline, IHCL ou IMCL. Dans la deuxième étude, des biopsies de muscle squelettique ont été prélevées chez cinq de ces volontaires avant et après les 4 semaines de RRFru. Les concentrations de mRNA de 18 gènes impliqués dans le métabolisme des lipides et des hydrates de carbone ont été mesurées par RT-PCR quantitative. Le RRFru a augmenté l'expression de gènes impliqués dans la synthèse de lipides, et diminué celles de gènes impliqués dans la sensibilité à l'insuline et l'oxydation de lipides. Ces changements pourraient constituer des altérations précoces de la sensibilité à l'insuline et du métabolisme lipidique en réponse au fructose. La troisième étude avait pour but de définir si les réponses au RRFru étaient semblables entre les hommes et les femmes. Pour ceci, des doses plus élevées de fructose ont été administrées à 8 jeunes hommes et 8 jeunes femmes durant 6 jours. Le RRFru a augmenté les TG chez les hommes (+71 %), et de manière nettement plus modeste chez les femmes (+16%). Les hommes ont développé une résistance hépatique à l'insuline, ainsi qu'une augmentation des concentrations d'alanine aminotransférase (+38%), mais aucun de ces effets n'a été observé chez les femmes. Cette étude suggère qu'à court terme, un RRFru mène à une hypertriglycéridémie et résistance hépatique à l'insuline chez l'homme, tandis que les femmes semblent en être protégées. Finalement, la 4ème étude a investigué si des personnes apparentées à des patients diabétiques de type 2 (AppDT2), qui constituent un groupe d'individus à risque de développer des maladies métaboliques en raison de leur background génétique, avaient des réponses plus marquées au RRFru. Huit hommes sains (Ctrl) et 16 AppDT2 on reçu dans un ordre randomisé un RRFru et une diète isocalorique durant 6 jours. Dans les deux groupes, le RRFru a augmenté significativement les IHCL (Ctrl: +76%; AppDT2: +79%) et les VLDL-TG plasmatiques à jeun (Ctrl: +51%; AppDT2: +110%). En valeurs absolues, ces deux augmentations étaient plus importantes dans le groupe des AppDT2, suggérant que ces individus sont plus à risque de développer des problèmes métaboliques suite à un apport de fructose. Afin de définir les effets spécifiques du fructose, quatre des huit sujets Ctrl ont été soumis à un régime riche en glucose. Après le régime riche en glucose, les concentrations de TG et d'IHCL étaient semblables aux valeurs obtenues après une diète isocalorique, contrairement aux nombreux effets observés après le RRFru. En conclusion, ces différentes études ont démontré que chez l'humain, le fructose peut rapidement induire une augmentation des VLDL-TG à jeun, des IHCL et une résistance hépatique à l'insuline ; ces effets semblent être spécifiques au fructose. De plus, les différents résultats obtenus montrent que les femmes développent des effets moindres en réponse au fructose, contrairement aux AppDT2, chez qui les effets du fructose semblent plus marqués. Résumé grand public : Le fructose est un sucre simple, présent naturellement et en faibles quantités dans les fruits, mais également constituant du sucrose - appelé aussi sucre de table. Depuis les années 1970, la consommation de fructose a augmenté dans les pays industrialisés et émergents, principalement par le biais d'une hausse de consommation de boissons sucrées de type soda. Dans des modèles animaux tels que les rongeurs, un régime riche en fructose mène au développement de plusieurs facteurs de risques étroitement liés aux maladies cardiovasculaires, à l'obésité et au diabète de type 2; ceux-ci sont caractérisés par une augmentation des concentrations de glucose et de lipides sanguins, ainsi qu'une accumulation de lipides dits « ectopiques », à savoir dans le foie et les muscles. Le but de cette thèse était de définir les effets d'un régime riche en fructose chez l'être humain. De plus, nous nous sommes intéressés à savoir si ces effets étaient semblables entre différents groupes d'individus, à savoir des personnes de sexe masculin / féminin, ou des personnes dont au moins un des parents est diabétique de type 2. Pour ceci, différents groupes de volontaires (hommes, femmes, avec histoire familiale de diabète de type 2) âgés de 18-30 ans se sont soumis à une alimentation enrichie en fructose, d'une durée allant de 6 à 28 jours, suivant l'étude à laquelle ils participaient. La quantité de fructose consommée en plus de l'alimentation normale durant ces périodes équivalait au contenu en fructose de 2-4 litres de boissons sucrées par jour. Des prises de sang ont été effectuées au terme de chacun de ces différents régimes, ainsi que des mesures de sensibilité à l'insuline et de concentrations de lipides dans le foie et le muscle par résonnance magnétique nucléaire, en collaboration avec l'Hôpital de l'Ile de Berne. Les résultats montrent qu'après 6 jours de régime riche en fructose, les volontaires sains de sexe masculin ont presque doublé leurs concentrations de lipides sanguins et hépatiques. De plus, le foie de ces volontaires réagissait moins bien à l'insuline, ce qui pourrait mener à long terme à des maladies métaboliques comme le diabète de type 2. Un des mécanismes postulés est que le fructose pourrait stimuler la formation de lipides dans le foie, contribuant ainsi à un dysfonctionnement de cet organe. De manière surprenante, des femmes d'âge et d'IMC (Indice de Masse Corporelle) comparables aux hommes étudiés n'ont pas développé ces différents effets en réponse au régime riche en fructose. Il semblerait donc qu'elles possèdent certaines propriétés pouvant les «protéger », du moins à court terme, des problèmes métaboliques induits par le fructose. De tels mécanismes sont pour l'heure inconnus, mais il est possible que des différences hormonales, ou de répartition de la masse graisseuse dans le corps, puissent jouer un rôle. Enfin, nous avons également démontré que chez certaines personnes ayant au moins un parent (père ou mère) diabétique de type 2, les augmentations de lipides sanguins et hépatiques induits par le fructose étaient plus marquées que chez des volontaires sans parents diabétiques. Ceci est néanmoins à tempérer par le fait que nous avons observé une grande hétérogénéité des réponses parmi ces individus, découlant certainement d'interactions complexes entre différents facteurs tels que la génétique, le mode de vie, l'alimentation et l'activité physique. Ces différents résultats donnent lieu à une meilleure compréhension du rôle de facteurs alimentaires dans le développement de problèmes métaboliques tels que le diabète de type 2. Ils vont également permettre de tester différentes approches thérapeutiques. Bien qu'ayant été obtenus avec des doses de fructose importantes, ces études soulignent l'effet potentiellement dangereux pour la santé d'une alimentation riche en sucres.