846 resultados para human immunodeficiency virus vaccine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Productive infection of T cells with human immunodeficiency virus 1 (HIV-1) typically requires that the T cells be stimulated with antigens or mitogens. This requirement has been attributed to the activation of the transcription factor NF-kappa B, which synergizes with the constitutive transcription factor Sp1 to drive the HIV-1 promoter. Recently, we have found that vigorous replication of HIV-1 takes place in nonactivated memory T cells after syncytium formation with dendritic cells (DCs). These syncytia lack activated cells as determined by an absence of staining for Ki-67 cell cycle antigen. The expression and activity of NF-kappa B and Sp1 were, therefore, analyzed in isolated T cells and DCs from humans and mice. We have used immunolabeling, Western blot analysis, and electrophoretic mobility shift and supershift assays. T cells lack active NF-kappa B but express Sp1 as expected. DCs express high levels of all known NF-kappa B and Rel proteins, with activity residing primarily within RelB, p50, and p65. However, DCs lack Sp1, which may explain the failure of HIV-1 to replicate in purified DCs. Coexpression of NF-kappa B and Sp1 occurs in the heterologous DC-T-cell syncytia that are induced by HIV-1. Therefore, HIV-1-induced cell fusion brings together factors that upregulate virus transcription. Since DCs and memory T cells frequently traffic together in situ, these unusual heterologous syncytia could develop in infected individuals and lead to chronic HIV-1 replication without ostensible immune stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4+ T cells by CD8+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8+ T cells. However, IL-2 induces CD8+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability to IL-2 to induce HIV expression. Five to 25 times fewer CD8+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25+) CD8+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8+ cells from long-term survivors [LTS; infected with human immunodeficiency virus (HIV) for 10 or more years and having CD4+ cell counts of > or = 500 cells per microliters] have a 3-fold greater ability to suppress HIV replication than do CD8+ cells from patients who have progressed to disease (progressors) during the same time period. A change in the pattern of cytokines produced in the host from those that typically favor cell-mediated immunity (T helper 1, TH1 or type 1) to those that down-regulate it (T helper 2, TH2 or type 2) was investigated as a cause of this reduced CD8+ cell anti-HIV function. Treatment of CD8+ cells from LTS with the TH1 cytokine interleukin (IL)-2 enhanced their anti-HIV activity, whereas exposure of these cells to TH2 cytokines IL-4 or IL-10 reduced their ability to suppress HIV replication and to produce IL-2. IL-2 could prevent and reverse the inhibitory effects of IL-4 and IL-10. Moreover, prolonged exposure of CD8+ cells from some progressors to IL-2 improved the ability of these cells to suppress HIV replication. These observations support previous findings suggesting that strong CD8+ cell responses play an important role in maintaining an asymptomatic state in HIV infection. The data suggest that the loss of CD8+ cell suppression of HIV replication associated with disease progression results from a shift in cytokine production within the infected host from a TH1 to a TH2 pattern. Modulation of these cytokines could provide benefit to HIV-infected individuals by improving their CD8+ cell anti-HIV activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plant lignan, 3'-O-methyl nordihydroguaiaretic acid (3'-O-methyl NDGA, denoted Malachi 4:5-6 or Mal.4; molecular weigth 316), was isolated from Larrea tridentata and found to be able to inhibit human immunodeficiency virus (HIV) Tat-regulated transactivation in vivo, induce protection of lymphoblastoid CEM-SS cells from HIV (strain IIIB) killing, and suppress the replication of five HIV-1 strains (WM, MN, VS, JR-CSF, and IIIB) in mitogen-stimulated peripheral blood mononuclear cells, all in a dose-dependent manner. Mal.4 inhibits both basal transcription and Tat-regulated transactivation in vitro. The target of Mal.4 has been localized to nucleotides -87 to -40 of the HIV long terminal repeat. Mal.4 directly and specifically interferes with the binding of Sp1 to Sp1 sites in the HIV long terminal repeat. By inhibiting proviral expression, Mal.4 may be able to interrupt the life cycles of both wild-type and reverse transcriptase or protease mutant viruses in HIV-infected patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of human immunodeficiency virus type 1 cDNA into a target DNA can be strongly influenced by the conformation of the target. For example, integration in vitro is sometimes favored in target DNAs containing sequence-directed bends or DNA distortions caused by bound proteins. We have analyzed the effect of DNA bending by studying integration into two well-characterized protein-DNA complexes: Escherichia coli integration host factor (IHF) protein bound to a phage IHF site, and the DNA binding domain of human lymphoid enhancer factor (LEF) bound to a LEF site. Both of these proteins have previously been reported to bend DNA by approximately 140 degrees. Binding of IHF greatly increases the efficiency of in vitro integration at hotspots within the IHF site. We analyzed a series of mutants in which the IHF site was modified at the most prominent hotspot. We found that each variant still displayed enhanced integration upon IHF binding. Evidently the local sequence is not critical for formation of an IHF hotspot. LEF binding did not create preferred sites for integration. The different effects of IHF and LEF binding can be rationalized in terms of the different proposed conformations of the two protein-DNA complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated two regions of the viral RNA of human immunodeficiency virus type 1 (HIV-1) as potential targets for antisense oligonucleotides. An oligodeoxynucleotide targeted to the U5 region of the viral genome was shown to block the elongation of cDNA synthesized by HIV-1 reverse transcriptase in vitro. This arrest of reverse transcription was independent of the presence of RNase H activity associated with the reverse transcriptase enzyme. A second oligodeoxynucleotide targeted to a site adjacent to the primer binding site inhibited reverse transcription in an RNase H-dependent manner. These two oligonucleotides were covalently linked to a poly(L-lysine) carrier and tested for their ability to inhibit HIV-1 infection in cell cultures. Both oligonucleotides inhibited virus production in a sequence- and dose-dependent manner. PCR analysis showed that they inhibited proviral DNA synthesis in infected cells. In contrast, an antisense oligonucleotide targeted to the tat sequence did not inhibit proviral DNA synthesis but inhibited viral production at a later step of virus development. These experiments show that antisense oligonucleotides targeted to two regions of HIV-1 viral RNA can inhibit the first step of viral infection--i.e., reverse transcription--and prevent the synthesis of proviral DNA in cell cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the relationship between the fusion selectivity of the envelope glycoprotein (env) and the tropism of different human immunodeficiency virus type 1 (HIV-1) isolates for CD4+ human T-cell lines vs. primary macrophages. Recombinant vaccinia viruses were prepared encoding the envs from several well-characterized HIV-1 isolates with distinct cytotropisms. Cells expressing the recombinant envs were mixed with various CD4+ partner cell types; cell fusion was monitored by a quantitative reporter gene assay and by syncytia formation. With CD4+ continuous cell lines as partners (T-cell lines, HeLa cells expressing recombinant CD4), efficient fusion occurred with the envs from T-cell line-tropic isolates (IIIB, LAV, SF2, and RF) but not with the envs from macrophage-tropic isolates (JR-FL, SF162, ADA, and Ba-L). The opposite selectivity pattern was observed with primary macrophages as cell partners; stronger fusion occurred with the envs from the macrophage-tropic than from the T-cell line-tropic isolates. All the envs showed fusion activity with peripheral blood mononuclear cells as partners, consistent with the ability of this cell population to support replication of all the corresponding HIV-1 isolates. These fusion selectivities were maintained irrespective of the cell type used to express env, thereby excluding a role for differential host cell modification. We conclude that the intrinsic fusion selectivity of env plays a major role in the tropism of a HIV-1 isolate for infection of CD4+ T-cell lines vs. primary macrophages, presumably by determining the selectivity of virus entry and cell fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We and other groups have recently reported the potentiation by ribonucleotide reductase inhibitors such as hydroxyurea of the anti-human immunodeficiency virus type 1 (HIV-1) activity of purine and pyrimidine 2',3'-dideoxynucleosides in both resting and phytohemagglutinin-stimulated peripheral blood mononuclear cells. Little agreement prevails, however, as to the mechanism of the synergistic effects described. We report here that in phytohemagglutinin-stimulated peripheral blood mononuclear cells, two mechanisms exist for the potentiation of the anti-HIV-1 activity by low-dose hydroxyurea of the purine-based dideoxynucleoside 2',3'-dideoxyinosine and the pyrimidine-based dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine. For 2',3'-dideoxyinosine, the enhancement arises from a specific depletion of dATP by hydroxyurea, resulting in a favorable shift of the 2',3'-dideoxyadenosine 5'-triphosphate/dATP ratio. For the pyrimidine dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine, the more modest anti-HIV enhancement results from hydroxyurea-induced increases of pyrimidine kinase activities in the salvage pathway and, hence, increased 5'-phosphorylation of these drugs, while depletion of the corresponding deoxynucleoside 5'-triphosphates (dTTP and dCTP) plays no significant role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of transient kinetic and equilibrium titration methods has been used to show that both primer/template and nucleotide binding to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase are two-step processes. In both cases, after initial formation of relatively weakly bound states, isomerization reactions lead to tightly bound states. In the case of deoxynucleotide binding to the reverse transcriptase-primer/template complex, the second step in the interaction is rate-limiting in the overall reaction during processive polymerization. Discrimination against incorrect nucleotides occurs both in the initial weak binding and in the second step but is purely kinetic in the second step (as opposed to thermodynamic in the first step). Nonnucleoside inhibitors have a relatively small effect on nucleotide-binding steps (overall affinity is reduced by a factor of ca. 10), while the affinity of the primer/template duplex is increased by at least a factor of 10. The major effect of nonnucleoside inhibitors is on the chemical step (nucleotide transfer).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulation of human immunodeficiency virus type 1 (HIV-1) gene expression in response to Tat is dependent on an element downstream of the HIV-1 transcriptional initiation site designated the trans-activating region (TAR). TAR forms a stable stem-loop RNA structure in which a 3-nt bulge structure and a 6-nt loop structure are important for Tat activation. In the absence of Tat, the HIV-1 promoter generates so-called short or nonprocessive transcripts terminating at +60, while in the presence of Tat the synthesis of these short transcripts is markedly decreased and transcripts that extend through the 9.0-kb HIV-1 genome are synthesized. Tat effects on transcriptional elongation are likely due to alterations in the elongation properties of RNA polymerase II. In this study we demonstrated that a set of cellular cofactors that modulate the binding of the cellular protein TRP-185 to the TAR RNA loop sequences also functioned to markedly stimulate the specific binding of hypophosphorylated (IIa) and hyperphosphorylated (IIo) RNA polymerase II to TAR RNA. The concentrations of RNA polymerase II required for this interaction with TAR RNA were similar to those required to initiate in vitro transcription from the HIV-1 long terminal repeat. RNA gel retardation analysis with wild-type and mutant TAR RNAs indicated that the TAR RNA loop and bulge sequences were critical for the binding of RNA polymerase II. The addition of wild-type but not mutant Tat protein to gel retardation analysis with TAR RNA and RNA polymerase II resulted in the loss of binding of RNA polymerase II binding to TAR RNA. These results suggest that Tat may function to alter RNA polymerase II, which is paused due to its binding to HIV-1 TAR RNA with resultant stimulation of its transcriptional elongation properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the ability of human immunodeficiency virus (HIV)-infected cells to kill uninfected CD4+ lymphocytes. Infected peripheral blood mononuclear cells were cocultured with autologous 51Cr-labeled uninfected cells. Rapid death of the normal CD4-expressing target population was observed following a brief incubation. Death of blood CD4+ lymphocytes occurred before syncytium formation could be detected or productive viral infection established in the normal target cells. Cytolysis could not be induced by free virus, was dependent on gp120-CD4 binding, and occurred in resting, as well as activated, lymphocytes. CD8+ cells were not involved in this phenomenon, since HIV-infected CEMT4 cells (CD4+, CD8- cells) mediated the cytolysis of uninfected targets. Reciprocal isotope-labeling experiments demonstrated that infected CEMT4 cells did not die in parallel with their targets. The uninfected target cells manifested DNA fragmentation, followed by the release of the 51Cr label. Thus, in HIV patients, infected lymphocytes may cause the depletion of the much larger population of uninfected CD4+ cells without actually infecting them, by triggering an apoptotic death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have failed to detect an interaction between monomeric soluble CD4 (sCD4) and class II major histocompatibility complex (MHC) proteins, suggesting that oligomerization of CD4 on the cell surface may be required to form a stable class II MHC binding site. To test this possibility, we transfected the F43I CD4 mutant, which is incapable of binding to class II MHC or human immunodeficiency virus (HIV) gp120, into COS-7 cells together with wild-type CD4 (wtCD4). Expression of F43I results in a dominant negative effect: no class II MHC binding is observed even though wtCD4 expression is preserved. Apparently, F43I associates with wtCD4 oligomers and interferes with the formation of functional class II MHC binding structures. In contrast, F43I does not affect the binding of gp120 to wtCD4, implying that gp120 binds to a CD4 monomer. By production and characterization of chimeric CD4 molecules, we show that domains 3 and/or 4 appear to be involved in oligomerization. Several models of the CD4-class II MHC interaction are offered, including the possibility that one or two CD4 molecules initially interact with class II MHC dimers and further associate to create larger complexes important for facilitating T-cell receptor crosslinking.