926 resultados para human hepatocelluar carcinoma BEL-7402 cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial (E)-cadherin and its associated cytoplasmic proteins (α-, β-, and γ-catenins) are important mediators of epithelial cell–cell adhesion and intracellular signaling. Much evidence exists suggesting a tumor/invasion suppressor role for E-cadherin, and loss of expression, as well as mutations, has been described in a number of epithelial cancers. To investigate whether E-cadherin gene (CDH1) mutations occur in colorectal cancer, we screened 49 human colon carcinoma cell lines from 43 patients by single-strand conformation polymorphism (SSCP) analysis and direct sequencing. In addition to silent changes, polymorphisms, and intronic variants in a number of the cell lines, we detected frameshift single-base deletions in repeat regions of exon 3 (codons 120 and 126) causing premature truncations at codon 216 in four replication-error-positive (RER+) cell lines (LS174T, HCT116, GP2d, and GP5d) derived from 3 patients. In LS174T such a mutation inevitably contributes to its lack of E-cadherin protein expression and function. Transfection of full-length E-cadherin cDNA into LS174T cells enhanced intercellular adhesion, induced differentiation, retarded proliferation, inhibited tumorigenicity, and restored responsiveness to the migratory effects induced by the motogenic trefoil factor 2 (human spasmolytic polypeptide). These results indicate that, although inactivating E-cadherin mutations occur relatively infrequently in colorectal cancer cell lines overall (3/43 = 7%), they are more common in cells with an RER+ phenotype (3/10 = 30%) and may contribute to the dysfunction of the E-cadherin–catenin-mediated adhesion/signaling system commonly seen in these tumors. These results also indicate that normal E-cadherin-mediated cell adhesion can restore the ability of colonic tumor cells to respond to trefoil factor 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background We have previously demonstrated that human kidney proximal tubule epithelial cells (PTEC) are able to modulate autologous T and B lymphocyte responses. It is well established that dendritic cells (DC) are responsible for the initiation and direction of adaptive immune responses and that these cells occur in the renal interstitium in close apposition to PTEC under inflammatory disease settings. However, there is no information regarding the interaction of PTEC with DC in an autologous human context. Methods Human monocytes were differentiated into monocyte-derived DC (MoDC) in the absence or presence of primary autologous activated PTEC and matured with polyinosinic:polycytidylic acid [poly(I:C)], while purified, pre-formed myeloid blood DC (CD1c+ BDC) were cultured with autologous activated PTEC in the absence or presence of poly(I:C) stimulation. DC responses were monitored by surface antigen expression, cytokine secretion, antigen uptake capacity and allogeneic T-cell-stimulatory ability. Results The presence of autologous activated PTEC inhibited the differentiation of monocytes to MoDC. Furthermore, MoDC differentiated in the presence of PTEC displayed an immature surface phenotype, efficient phagocytic capacity and, upon poly(I:C) stimulation, secreted low levels of pro-inflammatory cytokine interleukin (IL)-12p70, high levels of anti-inflammatory cytokine IL-10 and induced weak Th1 responses. Similarly, pre-formed CD1c+ BDC matured in the presence of PTEC exhibited an immature tolerogenic surface phenotype, strong endocytic and phagocytic ability and stimulated significantly attenuated T-cell proliferative responses. Conclusions Our data suggest that activated PTEC regulate human autologous immunity via complex interactions with DC. The ability of PTEC to modulate autologous DC function has important implications for the dampening of pro-inflammatory immune responses within the tubulointerstitium in renal injuries. Further dissection of the mechanisms of PTEC modulation of autologous immune responses may offer targets for therapeutic intervention in renal medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) is a method that allows the direct localisation of gene expression. The method utilises the dual buffer mediated activity of the enzyme rTth DNA polymerase enabling both reverse transcription and DNA amplification. Labelled nucleoside triphosphates allow the site of expression to be labelled, rather than the PCR primers themselves, giving a more accurate localisation of transcript expression and decreased background than standard in situ hybridisation (ISH) assays. The MDA-MB-231 human breast carcinoma (HBC) cell line was assayed via the IS-RT-PCR technique, using primers encoding MT-MMP (membrane-type matrix metalloproteinase) and human β-actin. Our results clearly indicate baseline expression of MT-MMP in the relatively invasive MDA-MB-231 cell line at a signal intensity similar to the housekeeping gene β-actin, and results following induction with Concanavalin A (Con A) are consistent with our previous results obtained via Northern blotting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro invasion and in vivo metastasis assays were performed with a panel of MCF-7 cells transfected with isogenic constructs of mutated ras(H) genes. Both increased levels of ras(H) expression and ras(H) oncogene activation increased activity of derivative cell lines in in vitro invasion assays. In vivo formation of spontaneous metastases was assessed after intradermal inoculation of MCF-7 cells in the vicinity of the mammary fat pads of ovariectomized nude mice. No metastases were seen in the absence of estradiol treatment of the mice. With estradiol supplementation of the mice both the ras(H)-transfected and control transfected cell lines gave a higher incidence of metastases than parental MCF-7 cells. Prolonged treatment of mice with exogenous estradiol (60 days vs. 21 days) resulted in more frequent metastases to liver and lung at the end of the 90-day observation period. In contrast to activated ras(H)-gene enhancement of metastatic capacity of rodent fibroblast and epithelial cell lines, there was no correlation of ras(H) expression with in vivo metastatic capacity of a human mammary carcinoma cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human ovarian carcinoma samples were orthotopically implanted into SCID mice to investigate the contribution of matrix metalloproteases (MMPs) to the spread of ovarian tumors. Mice were inoculated with patient tumor samples, and developed ovarian tumors over a 16-week period with metastasis occurring in some mice. Species-specific quantitative RT-PCR was used to identify the source of tumor-associated MMPs. Membrane-type (MT)1-MMP mRNA was significantly increased in high-grade tumors, tumors with evidence of serosal involvement, and tumors in which distant metastases were detected. The increase in MT1-MMP expression was predominantly from the human tumor cells, with a minor contribution from the mouse ovarian stroma. Neither human nor mouse MT2-MMP were correlated with tumor progression and MT3-MMP levels were negligible. While tumor cells did not produce significant amounts of MMP-2 or MMP-9, the presence of tumor was associated with increased levels of MMP-2 expression by mouse ovarian stroma. Stromal-derived MT1-MMP was greater in large tumors and was associated with stromal MMP-2 expression but neither was significantly linked with metastasis. These studies indicate that tumor-derived MT1-MMP, more so than other gelatinolytic MMPs, is strongly linked to aggressive tumor behavior. This orthotopic model of human ovarian carcinoma is appropriate for studying ovarian tumor progression, and will be valuable in the further investigation of the metastatic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that fibroblasts and invasive human breast carcinoma (HBC) cells specifically activate matrix metalloproteinase- 2 (MMP-2) when cultured on 3-dimensional gels of type I collagen but not a range of other substrates. We show here the constitutive expression of membrane-type 1 (MT1)-MMP in both fibroblasts, and invasive HBC cell lines, that have fibroblastic attributes presumably acquired through an epithelial- to-mesenchymal transition (EMT). Treatment with collagen type I increased the steady-state MT1-MMP mRNA levels in these cells but did not induce either MT1-MMP expression or MMP-2 activation in noninvasive breast carcinoma cell lines, which retain epithelial features. Basal MT3-MMP mRNA expression had a pattern similar to that of MT1-MMP but was not up-regulated by collagen. MT4- MMP mRNA was seen in both invasive and noninvasive HBC cell lines and was also not collagen-regulated, and MT2-MMP mRNA was not detected in any of the HBC cell lines tested. These data support a role for MT1-MMP in the collagen- induced MMP-2-activation seen in these cells. In situ hybridization analysis of archival breast cancer specimens revealed a close parallel in expression of both collagen type I and MT1-MMP mRNA in peritumoral fibroblasts, which was correlated with aggressiveness of the lesion. Relatively high levels of expression of both mRNA species were seen in fibroblasts close to invasive tumor nests and, although only focally, in certain areas close to preinvasive tumors. These foci may represent hot spots for local degradation and invasive progression. Collectively, these results implicate MT1-MMP in collagen- stimulated MMP-2 activation and suggest that this mechanism may be employed in vivo by both tumor-associated fibroblasts and EMT-derived carcinoma cells to facilitate increased invasion and/or metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reports show that cold atmospheric-pressure plasmas can induce death of cancer cells in several minutes. However, very little is presently known about the mechanism of the plasma-induced death of cancer cells. In this paper, an atmospheric-pressure plasma plume is used to treat HepG2 cells. The experimental results show that the plasma can effectively control the intracellular concentrations of ROS, NO and lipid peroxide. It is shown that these concentrations are directly related to the mechanism of the HepG2 death, which involves several stages. First, the plasma generates NO species, which increases the NO concentration in the extracellular medium. Second, the intracellular NO concentration is increased due to the NO diffusion from the medium. Third, an increase in the intracellular NO concentration leads to the increase of the intracellular ROS concentration. Fourth, the increased oxidative stress results in more effective lipid peroxidation and consequently, cell injury. The combined action of NO, ROS and lipid peroxide species eventually results in the HepG2 cell death. The mechanism of death of human hepatocellular carcinoma cells (HepG2) induced by atmospheric-pressure room-temperature plasma, related to the plasma-controlled intracellular concentrations of reactive oxygen species (ROS), nitric oxide (NO) and lipid peroxide is revealed. Only 34.75 s are required to reduce the number of the viable HepG2 cells by 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing,CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, preexisting SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SClike BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (ARlow) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The ARlow seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth of human promonocytic leukaemic U937 cells was found arrested within 24 h upon exposure to interferon gamma (IFN-gamma). Removal of the interferon did not result in the resumption of growth, as is evident from the absence of doubling of viable cell count and(3)H-thymidine incorporation. 5-Bromo-2'-deoxyuridine-based flow cytometric analysis of the growth-arrested cells, 24 h subsequent to the removal of IFN-gamma, showed absence of DNA synthesis, confirming the irreversible nature of the growth inhibition. Propidium iodide-based flow cytometric analysis of the growth-arrested cells showed a distribution which is typical of a growth inhibition without resulting in the accumulation of cells in any specific phase of the cell cycle. These results indicated that IFN-gamma arrested growth of U937 cells in an irreversible and cell cycle phase-independent manner. These observations were in contrast to our earlier report on the reversible and cell cycle phase-specific growth inhibition of human amniotic (fetal epithelial) WISH cells by the interferon. Copyright 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer stem cells (CSCs) are a vital subpopulation of cells to target for the treatment of cancers. In oesophageal squamous cell carcinoma (ESCC), there are several markers such as CD44, ALDH, Pygo2, MAML1, Twist1, Musashi1, Side population (SP), CD271 and CD90 that have been proposed to identify the cancer stem cells in individual cancer masses. It has also been demonstrated that stem cell markers like ALDH1, HIWI, Oct3/4, ABCG2, SOX2, SALL4, BMI-1, NANOG, CD133 and podoplanin are associated with patient's prognosis, pathological stages, cancer recurrence and therapy resistance. Finding new cancer stem cell targets or designing drugs to manipulate the known molecular targets in CSCs could be useful for improvements in clinical outcomes of the disease. To conclude, data suggest that CSCs in oesophageal squamous cell carcinoma are related to resistance to therapy and poor prognosis of patients with ESCC. Therefore, innovative insights into CSC biology and CSC-targeted therapies will help to achieve more effective management of patients with oesophageal squamous cell carcinoma.