677 resultados para homoclinic bifurcation
Resumo:
Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.
Resumo:
In this article we present a computational framework for isolating spatial patterns arising in the steady states of reaction-diffusion systems. Such systems have been used to model many different phenomena in areas such as developmental and cancer biology, cell motility and material science. Often one is interested in identifying parameters which will lead to a particular pattern. To attempt to answer this, we compute eigenpairs of the Laplacian on a variety of domains and use linear stability analysis to determine parameter values for the system that will lead to spatially inhomogeneous steady states whose patterns correspond to particular eigenfunctions. This method has previously been used on domains and surfaces where the eigenvalues and eigenfunctions are found analytically in closed form. Our contribution to this methodology is that we numerically compute eigenpairs on arbitrary domains and surfaces. Here we present various examples and demonstrate that mode isolation is straightforward especially for low eigenvalues. Additionally we see that if two or more eigenvalues are in a permissible range then the inhomogeneous steady state can be a linear combination of the respective eigenfunctions. Finally we show an example which suggests that pattern formation is robust on similar surfaces in cases that the surface either has or does not have a boundary.
Resumo:
We study the global bifurcation of nonlinear Sturm-Liouville problems of the form -(pu')' + qu = lambda a(x)f(u), b(0)u(0) - c(0)u' (0) = 0, b(1)u(1) + c(1)u'(1) = 0 which are not linearizable in any neighborhood of the origin. (c) 2005 Published by Elsevier Ltd.
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system
Resumo:
The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.
Resumo:
Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.
Resumo:
This paper presents two algorithms for one-parameter local bifurcations of equilibrium points of dynamical systems. The algorithms are implemented in the computer algebra system Maple 13 © and designed as a package. Some examples are reported to demonstrate the package’s facilities.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solutions of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this article, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and the existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for the existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple-frequency channels. © 2010 The American Physical Society.
Resumo:
Acknowledgements The authors acknowledge the projects supported by the National Basic Research Program of China (973 Project)(No. 2015CB057405) and the National Natural Science Foundation of China (No. 11372082) and the State Scholarship Fund of CSC. DW thanks for the hospitality of the University of Aberdeen.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z_2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
In this work, we consider the second-order discontinuous equation in the real line, u′′(t)−ku(t)=f(t,u(t),u′(t)),a.e.t∈R, with k>0 and f:R3→R an L1 -Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.