900 resultados para hierarchical tree-structure
Resumo:
Com objetivo de caracterizar a comunidade de aves florestais do Distrito de Bragança, fez-se um estudo em quatro locais de características diferentes sob ponto de vista de estrutura e composição de espécies, através de recolha de informação com base nas listas de 10 espécies de Mackinnon e pelo método captura com redes de neblina, para caracterização das biometrias e parâmetros populacionais, de modo a caracterizar a estrutura das comunidades de aves em cada local. A Combinação dos dois métodos possibilitou a captura e identificação de indivíduos de 44 espécies diferentes, pertencentes a 24 famílias distintas. Destas, as mais representativas foram determinadas através do Índice de Frequência das Listas (IFL) e foram Parus major, Erithacus rubecula, Turdus merula e Sylvia atricapilla. Os resultados referentes à riqueza específica, obtidos através das listas de MacKinnon foram analisados com ANOVA não paramétricas (Kruskal-Wallis). Dos quatro locais, a Ricafé mostrou diferenças significativas na variação de número de espécies. Em relação aos períodos de capturas, o segundo quadrimestre teve número de espécies estatisticamente diferentes dos restantes quadrimestres do ano. No Período de Invernada há menor atividade de aves em todos os locais. Pinhal e Tabuado têm pouca diversidade de espécies.
Resumo:
Policy and decision makers dealing with environmental conservation and land use planning often require identifying potential sites for contributing to minimize sediment flow reaching riverbeds. This is the case of reforestation initiatives, which can have sediment flow minimization among their objectives. This paper proposes an Integer Programming (IP) formulation and a Heuristic solution method for selecting a predefined number of locations to be reforested in order to minimize sediment load at a given outlet in a watershed. Although the core structure of both methods can be applied for different sorts of flow, the formulations are targeted to minimization of sediment delivery. The proposed approaches make use of a Single Flow Direction (SFD) raster map covering the watershed in order to construct a tree structure so that the outlet cell corresponds to the root node in the tree. The results obtained with both approaches are in agreement with expert assessments of erosion levels, slopes and distances to the riverbeds, which in turn allows concluding that this approach is suitable for minimizing sediment flow. Since the results obtained with the IP formulation are the same as the ones obtained with the Heuristic approach, an optimality proof is included in the present work. Taking into consideration that the heuristic requires much less computation time, this solution method is more suitable to be applied in large sized problems.
Resumo:
Many data are naturally modeled by an unobserved hierarchical structure. In this paper we propose a flexible nonparametric prior over unknown data hierarchies. The approach uses nested stick-breaking processes to allow for trees of unbounded width and depth, where data can live at any node and are infinitely exchangeable. One can view our model as providing infinite mixtures where the components have a dependency structure corresponding to an evolutionary diffusion down a tree. By using a stick-breaking approach, we can apply Markov chain Monte Carlo methods based on slice sampling to perform Bayesian inference and simulate from the posterior distribution on trees. We apply our method to hierarchical clustering of images and topic modeling of text data.
Resumo:
For many tree species, mating system analyses have indicated potential variations in the selfing rate and paternity correlation among fruits within individuals, among individuals within populations, among populations, and from one flowering event to another. In this study, we used eight microsatellite markers to investigate mating systems at two hierarchical levels (fruits within individuals and individuals within populations) for the insect pollinated Neotropical tree Tabebuia roseo-alba. We found that T. roseo-alba has a mixed mating system with predominantly outcrossed mating. The outcrossing rates at the population level were similar across two T. roseo-alba populations; however, the rates varied considerably among individuals within populations. The correlated paternity results at different hierarchical levels showed that there is a high probability of shared paternal parentage when comparing seeds within fruits and among fruits within plants and full-sibs occur in much higher proportion within fruits than among fruits. Significant levels of fixation index were found in both populations and biparental inbreeding is believed to be the main cause of the observed inbreeding. The number of pollen donors contributing to mating was low. Furthermore, open-pollinated seeds varied according to relatedness, including half-sibs, full-sibs, self-sibs and self- half-sibs. In both populations, the effective population size within a family (seed-tree and its offspring) was lower than expected for panmictic populations. Thus, seeds for ex situ conservation genetics, progeny tests and reforestation must be collected from a large number of seed-trees to guarantee an adequate effective population in the sample.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.
Resumo:
A series of one dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into butanol solution. The materials were calcined at 773K and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), N2 adsorption/desorption, infrared emission spectroscopy (IES). The results demonstrated that when the molar percentage X=100*Zr/(Al+Zr) was > 30 %, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals on the surface were formed. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific technologies. The mechanism for the formation of long ZrO2/Al2O3 composite nanorods was proposed in this work.
Resumo:
A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.
Resumo:
Existing techniques for automated discovery of process models from event logs gen- erally produce flat process models. Thus, they fail to exploit the notion of subprocess as well as error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of hierarchical BPMN models con- taining interrupting and non-interrupting boundary events and activity markers. The technique employs functional and inclusion dependency discovery techniques in order to elicit a process-subprocess hierarchy from the event log. Given this hierarchy and the projected logs associated to each node in the hierarchy, parent process and subprocess models are then discovered using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. By employing approximate dependency discovery tech- niques, it is possible to filter out noise in the event log arising for example from data entry errors or missing events. A validation with one synthetic and two real-life logs shows that process models derived by the proposed technique are more accurate and less complex than those derived with flat process discovery techniques. Meanwhile, a validation on a family of synthetically generated logs shows that the technique is resilient to varying levels of noise.
Resumo:
Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments.
Resumo:
The transcriptional regulation of gene expression is orchestrated by complex networks of interacting genes. Increasing evidence indicates that these `transcriptional regulatory networks' (TRNs) in bacteria have an inherently hierarchical architecture, although the design principles and the specific advantages offered by this type of organization have not yet been fully elucidated. In this study, we focussed on the hierarchical structure of the TRN of the gram-positive bacterium Bacillus subtilis and performed a comparative analysis with the TRN of the gram-negative bacterium Escherichia coli. Using a graph-theoretic approach, we organized the transcription factors (TFs) and sigma-factors in the TRNs of B. subtilis and E. coli into three hierarchical levels (Top, Middle and Bottom) and studied several structural and functional properties across them. In addition to many similarities, we found also specific differences, explaining the majority of them with variations in the distribution of s-factors across the hierarchical levels in the two organisms. We then investigated the control of target metabolic genes by transcriptional regulators to characterize the differential regulation of three distinct metabolic subsystems (catabolism, anabolism and central energy metabolism). These results suggest that the hierarchical architecture that we observed in B. subtilis represents an effective organization of its TRN to achieve flexibility in response to a wide range of diverse stimuli.
Resumo:
The standard, ad-hoc stopping criteria used in decision tree-based context clustering are known to be sub-optimal and require parameters to be tuned. This paper proposes a new approach for decision tree-based context clustering based on cross validation and hierarchical priors. Combination of cross validation and hierarchical priors within decision tree-based context clustering offers better model selection and more robust parameter estimation than conventional approaches, with no tuning parameters. Experimental results on HMM-based speech synthesis show that the proposed approach achieved significant improvements in naturalness of synthesized speech over the conventional approaches. © 2011 IEEE.