934 resultados para hierarchical image analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Areolae of the crustose lichen Rhizocarpon geographicum (L.) DC., are present on the peripheral prothallus (marginal areolae) and also aggregate to form confluent masses in the centre of the thallus (central areolae). To determine the relationships between these areolae and whether growth of the peripheral prothallus is dependent on the marginal areolae, the density, morphology, and size frequency distributions of marginal areolae were measured in 23 thalli of R. geographicum in north Wales, UK using image analysis (Image J). Size and morphology of central areolae were also studied across the thallus. Marginal areolae were small, punctate, and occurred in clusters scattered over the peripheral prothallus while central areolae were larger and had a lobed structure. The size-class frequency distributions of the marginal and central areolae were fitted by power-law and log-normal models respectively. In 16 out of 23 thalli, central areolae close to the outer edge were larger and had a more complex lobed morphology than those towards the thallus centre. Neither mean width nor radial growth rate (RaGR) of the peripheral prothallus were correlated with density, diameter, or area fraction of marginal areolae. The data suggest central areolae may develop from marginal areolae as follows: (1) marginal areolae develop in clusters at the periphery and fuse to form central areolae, (2) central areolae grow exponentially, and (3) crowding of central areolae results in constriction and fragmentation. In addition, growth of the peripheral prothallus may be unrelated to the marginal areolae. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To establish the sensitivity and reliability of objective image analysis in direct comparison with subjective grading of bulbar hyperaemia. Methods: Images of the same eyes were captured with a range of bulbar hyperaemia caused by vasodilation. The progression was recorded and 45 images extracted. The images were objectively analysed on 14 occasions using previously validated edge-detection and colour-extraction techniques. They were also graded by 14 eye-care practitioners (ECPs) and 14 non-clinicians (NCb) using the Efron scale. Six ECPs repeated the grading on three separate occasions Results: Subjective grading was only able to differentiate images with differences in grade of 0.70-1.03 Efron units (sensitivity of 0.30-0.53), compared to 0,02-0.09 Efron units with objective techniques (sensitivity of 0.94-0.99). Significant differences were found between ECPs and individual repeats were also inconsistent (p<0.001). Objective analysis was 16x more reliable than subjective analysis. The NCLs used wider ranges of the scale but were more variable than ECPs, implying that training may have an effect on grading. Conclusions: Objective analysis may offer a new gold standard in anterior ocular examination, and should be developed further as a clinical research tool to allow more highly powered analysis, and to enhance the clinical monitoring of anterior eye disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To use previously validated image analysis techniques to determine the incremental nature of printed subjective anterior eye grading scales. Methods: A purpose designed computer program was written to detect edges using a 3 × 3 kernal and to extract colour planes in the selected area of an image. Annunziato and Efron pictorial, and CCLRU and Vistakon-Synoptik photographic grades of bulbar hyperaemia, palpebral hyperaemia roughness, and corneal staining were analysed. Results: The increments of the grading scales were best described by a quadratic rather than a linear function. Edge detection and colour extraction image analysis for bulbar hyperaemia (r2 = 0.35-0.99), palpebral hyperaemia (r2 = 0.71-0.99), palpebral roughness (r2 = 0.30-0.94), and corneal staining (r2 = 0.57-0.99) correlated well with scale grades, although the increments varied in magnitude and direction between different scales. Repeated image analysis measures had a 95% confidence interval of between 0.02 (colour extraction) and 0.10 (edge detection) scale units (on a 0-4 scale). Conclusion: The printed grading scales were more sensitive for grading features of low severity, but grades were not comparable between grading scales. Palpebral hyperaemia and staining grading is complicated by the variable presentations possible. Image analysis techniques are 6-35 times more repeatable than subjective grading, with a sensitivity of 1.2-2.8% of the scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the use of MRIA for quantitative characterisation of subretinal fibrosis secondary to nAMD. Methods: MRIA images of the posterior pole were acquired over 4 months from 20 eyes including those with inactive subretinal fibrosis and those being treated with ranibizumab for nAMD. Changes in morphology of the macula affected by nAMD were modelled and reflectance spectra at the MRIA acquisition wavelengths (507, 525, 552, 585, 596, 611 and 650nm) were computed using Monte Carlo simulation. Quantitative indicators of fibrosis were derived by matching image spectra to the model spectra of known morphological properties. Results: The model spectra were comparable to the image spectra, both normal and pathological. The key morphological changes that the model associated with nAMD were gliosis of the IS-OS junction, decrease in retinal blood and decrease in RPE melanin. However, these changes were not specific to fibrosis and none of the quantitative indicators showed a unique association with the degree of fibrosis. Moderate correlations were found with the clinical assessment, but not with the treatment program. Conclusion: MRIA can distinguish subretinal fibrosis from healthy tissue. The methods used show high sensitivity but low specificity, being unable to distinguish scarring from other abnormalities like atrophy. Quantification of scarring was not achieved with the wavelengths used due to the complex structural changes to retinal tissues in the process of nAMD. Further studies, incorporating other wavelengths, will establish whether MRIA has a role in the assessment of subretinal fibrosis in the context of retinal and choroidal pathology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this research are to analyze and develop a modified Principal Component Analysis (PCA) and to develop a two-dimensional PCA with applications in image processing. PCA is a classical multivariate technique where its mathematical treatment is purely based on the eigensystem of positive-definite symmetric matrices. Its main function is to statistically transform a set of correlated variables to a new set of uncorrelated variables over $\IR\sp{n}$ by retaining most of the variations present in the original variables.^ The variances of the Principal Components (PCs) obtained from the modified PCA form a correlation matrix of the original variables. The decomposition of this correlation matrix into a diagonal matrix produces a set of orthonormal basis that can be used to linearly transform the given PCs. It is this linear transformation that reproduces the original variables. The two-dimensional PCA can be devised as a two successive of one-dimensional PCA. It can be shown that, for an $m\times n$ matrix, the PCs obtained from the two-dimensional PCA are the singular values of that matrix.^ In this research, several applications for image analysis based on PCA are developed, i.e., edge detection, feature extraction, and multi-resolution PCA decomposition and reconstruction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method to evaluate hierarchical image segmentation procedures, in order to enable comparisons between different hierarchical algorithms and of these with other (non-hierarchical) segmentation techniques (as well as with edge detectors) to be made. The proposed method builds up on the edge-based segmentation evaluation approach by considering a set of reference human segmentations as a sample drawn from the population of different levels of detail that may be used in segmenting an image. Our main point is that, since a hierarchical sequence of segmentations approximates such population, those segmentations in the sequence that best capture each human segmentation level of detail should provide the basis for the evaluation of the hierarchical sequence as a whole. A small computational experiment is carried out to show the feasibility of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of Acceptance: 31/08/2015 The authors would like to thank Total E&P and BG Group for project funding and support and the Industry Technology Facilitator for enabling the collaborative development (grant number 3322PSD). The authors would also like to thank Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Dougal Jerram, Raymi Castilla, Claude Gout, Frances Abbots and an anonymous reviewer are thanked for their constructive comments and suggestions to improve the standard of this manuscript. The authors would also like to express their gratitude toJohn Still and Colin Taylor for technical assistance in the laboratory and Nick Timms (Curtin University) and Angela Halfpenny (CSIRO) for their assistance with the full thin section scanning equipment.