965 resultados para gold mine
Resumo:
Photocatalytic synthesis using visible light is a desirable chemical process because of its potential to utilize sunlight. Supported gold nanoparticles (Au-NPs) were found to be efficient photocatalysts and the effects of the supports were identified including CeO2, TiO2, ZrO2, Al2O3, and zeolite Y. In particular Au/CeO2 exhibited the high catalytic activity to reduce nitroaromatics to azo compounds, hydrogenate azobenzene to hydroazobenzene, reduce ketones to alcohols, and deoxygenate epoxides to alkenes at ambient temperatures, under irradiation of visible light (or simulated sunlight). The reac-tive efficiency depends on two primary factors: one is the light adsorption of catalysts and another is the driving ability of catalysts corresponding to the reactants. The light absorption by Au-NPs is due to surface plasmon resonance effect or inter-band electron transition; this is related to the reduction ability of the photocatalysts. Irradiation with shorter wavelengths can excite the conduction electrons in Au-NPs to higher energy levels and as a result, induce reduction with more negative reduction potentials. It is known when irradiated with light the Au-NPs can abstract hydrogen from isopropanol forming Au-H species on the Au-NP surface. Hence, we proposed that the active Au-H species will react with the N=O, N=N, C=O double bonds or epoxide bonds, which are weakened by the interaction with the excited electrons in the Au-NPs, and yield the final reductive products. The reacting power of the Au-H species depends on the energy of the excited electrons in Au-NPs: the higher the electronic energy, the stronger the reduction ability of the Au-H species. This finding demonstrates that we can tune the reduction ability of the photocatalysts by manipulating the irradiation wavelength.
Resumo:
We investigate the evolving quality of entrepreneurship in the Gold Coast Marine Precinct, a purpose-built industrial district in Southeast Queensland, Australia. Our findings are that the environment in the Precinct can be conducive to a better quality of entrepreneurship than may be feasible for firms in other settings; that a successful industrial district can be created artificially, with appropriate social relationships evolving afterwards; and that improvements in information and communications technology have undermined some aspects of traditional behaviour in the Precinct, but the essential nature of internal relationships remains intact.
Resumo:
The City of the Gold Coast in Queensland, Australia, will host the Commonwealth Games in 2018. In advance of the Games, the City is beginning to reposition the traditional marketing programs that were based around the four S’s- ‘sun, sand, surf and sex.’ There is a new emphasis on urban sophistication, sport, science, education and the environment. At the same time, local communities are asking for renewed attention to residential issues, particularly relating to recognising the importance of culture to the region. In this paper I explore the development of integrated computer technologies (ICTs) as a way of linking tourism, culture and place in the experience economy of the Gold Coast. The discussion is framed by theories of the post-tourist, contemporary cultural tourism and the role of mobile technologies, and the figure of the ‘referential tourist.’ An examination of stakeholder responses to changing business and social frameworks on the Gold Coast shows how discussions about a range of issues coalesce around cultural tourism. Local communities have the opportunity to engage with the new tourist as they move quickly between leisure and cultural experiences, at once connected to tourist expectations but increasingly self-directed. The Surfers Paradise Nights campaign, which is based around social media, is a case in point. This campaign aims to interest visitors in becoming a part of a familiar third place, an online space, but one that will sustain an emotive connection to the physical location and events. The paper also draws on research carried out in Brisbane, Queensland, in relation to building connections between place and culture on designated, self-directed journeys via iPhone technology. Participant responses indicate the importance of narrative to developing cultural frameworks.
Resumo:
Intercalated Archean komatiites and dacites sit above a thick footwall dacite unit in the host rock succession at the Black Swan Nickel Mine, north of Kalgoorlie in the Yilgarn Craton, Western Australia. Both lithofacies occur in units that vary in scale from laterally extensive at the scale of the mine lease to localized, thin, irregular bodies, from > 100 m thick to only centimetres thick. Some dacites are only slightly altered and deformed, and are interpreted to post-date major deformation and alteration (late porphyries). However, the majority of the dacites display evidence of deformation, especially at contacts, and metamorphism, varying from silicification and chlorite alteration at contacts to pervasive low grade regional metamorphic alteration represented by common assemblages of chlorite, sericite and albite. Texturally, the dacites vary from entirely massive and coherent to partially brecciated to totally brecciated. Strangely, some dacites are coherent at the margins and brecciated internally. Breccia textures vary from cryptically defined, to blocky, closely packed, in situ jig-saw fit textures with secondary minerals in fractures between clasts, to more apparent matrix rich textures with round clast forms, giving apparent conglomerate textures. Some clast zones have multi-coloured clasts, giving the impression of varied provenance. Strangely however, all these textural variants have gradational relationships with each other, and no bedding or depositional structures are present. This indicates that all textures have an in situ origin. The komatiites are generally altered and pervasively carbonate veined. Preservation of original textures is patchy and local, but includes coarse adcumulate, mesocumulate, orthocumulate, crescumulate-harrisite and occasionally spinifex textures. Where original contacts between komatiites and dacites are preserved intact (i.e. not sheared or overprinted by alteration), the komatiites have chilled margins, whereas the dacites do not. The margins of the dacites are commonly silicified, and inclusions of dacite occur in komatiite, even at the top contacts of komatiite units, but komatiite clasts do not occur in the dacites. The komatiites therefore were emplaced as sills into the dacites, and the intercalated relationships are interpreted as intrusive. The brecciation and alteration in the dacites are interpreted as being largely due to hydraulic fracturing and alteration induced by contact metamorphic effects and hydrothermal alteration deriving from the intrusion of komatiites into the felsic pile. The absence of autobreccia and hyaloclastite textures in the dacites suggest that they were emplaced as an earlier intrusive (sill?) complex at a high level in the crust.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
Australia is the driest inhabited continent in the world and persisting droughts have triggered a move toward sensible and sustainable water consumption. Understanding how and where water is consumed in households enables streamlined development of demand management programs and efficient engineering of water infrastructure. End use water consumption analysis is required to gain necessary empirical data of how and where water is consumed. Several end use water consumption studies have been conducted within Australia and around the world with varying results produced. This pilot study paper provides preliminary data from the Gold Coast Watersaver End Use Project which is currently underway. Specifically, the paper includes water end use category volumetric and percentage break downs for 18 single and 32 dual reticulated homes on the Gold Coast (i.e. 50 in total). Moreover, a comparitive analysis between each of the individual households water end use levels is discussed along with other national studies previously completed. The paper finishes with an overview of the greater 200 home end use study conducted on the Gold Coast and its key deliverables and research outcomes.
Resumo:
This is the first research focusing on Gold Coast school libraries and teacher- librarians. It presents a detailed picture of library provision and staffing at a representative group of 27 government and non-government schools at the Gold Coast. It shows links between employment of a teacher-librarian and higher NAPLAN reading and writing scores. And it presents the principals’ generally positive views about teacher-librarians’ contribution to reading and literacy at their schools. The findings respond in part to the recent government inquiry’s call (House of Representatives, 2011) for research about the current staffing of school libraries in Australia, and the influence of school libraries and teacher-librarians on students’ literacy and learning outcomes. While the study has focused on a relatively small group of school libraries, it has produced a range of significant outcomes: • An extensive review of international and Australian research showing impacts of school libraries and teacher-librarians on students’ literacy and learning outcomes • Findings consistent with international research showing: - An inverse relationship between lower student to EFT library staff ratio and higher school NAPLAN scores for reading and writing - Schools that employ a teacher-librarian tend to achieve school NAPLAN scores for respective year levels that are higher than the national mean It is anticipated that the study’s findings will be of interest to education authorities, school leadership teams, teacher-librarians, teachers and researchers. The findings provide evidence to: • inform policy development and strategic planning for school libraries that respond to the literacy development needs of 21st century learners • inform school-based management of school libraries • inform curriculum development and teacher-librarian practice • support further collaborative research on a State or national level • enhance conceptual understandings about relationship(s) between school libraries, teacher-librarians and literacy/information literacy development • support advocacy about school libraries, teacher-librarians and their contribution to literacy development and student learning in Australian schools SLAQ President Toni Leigh comments: “It is heartening to see findings which validate the critical role teacher-librarians play in student literacy development and the positive correlation of higher NAPLAN scores and schools with a qualified teacher-librarian. Also encouraging is the high percentage of school principals who recognise the necessity of a well resourced school library and the positive influence of these libraries on student literacy”. This research arises from a research partnership between School Library Association of Queensland (SLAQ) and Children and Youth Research Centre, QUT. Lead researcher: Dr Hilary Hughes, Children and Youth Research Centre, QUT Research assistants: Dr Hossein Bozorgian, Dr Cherie Allan, Dr Michelle Dicinoski, QUT SLAQ Research Reference Group: Toni Leigh, Marj Osborne, Sally Fraser, Chris Kahl and Helen Reynolds Reference: House of Representatives. (2011). School libraries and teacher librarians in 21st century Australia. Canberra: Commonwealth of Australia. http://www.aph.gov.au/Parliamentary_Business/Committees/House_of_Representatives_Committees?url=ee/schoollibraries/report.htm
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
We have explored the potential of deep Raman spectroscopy, specifically surface enhanced spatially offset Raman spectroscopy (SESORS), for non-invasive detection from within animal tissue, by employing SERS-barcoded nanoparticle (NP) assemblies as the diagnostic agent. This concept has been experimentally verified in a clinic-relevant backscattered Raman system with an excitation line of 785 nm under ex vivo conditions. We have shown that our SORS system, with a fixed offset of 2-3 mm, offered sensitive probing of injected QTH-barcoded NP assemblies through animal tissue containing both protein and lipid. In comparison to that of non-aggregated SERS-barcoded gold NPs, we have demonstrated that the tailored SERS-barcoded aggregated NP assemblies have significantly higher detection sensitivity. We report that these NP assemblies can be readily detected at depths of 7-8 mm from within animal proteinaceous tissue with high signal-to-noise (S/N) ratio. In addition they could also be detected from beneath 1-2 mm of animal tissue with high lipid content, which generally poses a challenge due to high absorption of lipids in the near-infrared region. We have also shown that the signal intensity and S/N ratio at a particular depth is a function of the SERS tag concentration used and that our SORS system has a QTH detection limit of 10-6 M. Higher detection depths may possibly be obtained with optimization of the NP assemblies, along with improvements in the instrumentation. Such NP assemblies offer prospects for in vivo, non-invasive detection of tumours along with scope for incorporation of drugs and their targeted and controlled release at tumour sites. These diagnostic agents combined with drug delivery systems could serve as a “theranostic agent”, an integration of diagnostics and therapeutics into a single platform.
Resumo:
This paper reports research about school libraries, teacher-librarians and their contribution to literacy development. It presents an evidenced based snapshot, from the principals’ perspective, of 27 school libraries in the Gold Coast area of Australia. These new Australian findings show: • an evidenced based snapshot of school libraries and teacher-librarians, from the principals’ perspective • indications that school NAPLAN scores for reading and writing were generally higher when (a) student to library staff ratios were lower (i.e. better) and (b) the school had a teacher-librarian. The research responds to the Australian Government inquiry into school libraries and teacher-librarians (2010-11) which identified an urgent need for current data about provision and staffing of school libraries and their influence on student literacy and learning. In light of the National plan for school improvement (Australian Government, 2013), the findings are of potential interest to education authorities, school leadership teams, teacher-librarians, teachers and researchers. They offer evidence to inform policy development, strategic planning and advocacy about school libraries and teacher-librarians in supporting the reading, literacy and learning needs of 21st century learners.
Resumo:
This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.
Resumo:
The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region.
Resumo:
The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.