921 resultados para glucose transporter 4
Resumo:
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.
Resumo:
OBJECTIVEIncrease in adipose cAMP response binding protein (CREB) activity promotes adipocyte dysfunction and systemic insulin resistance in obese mice. This is achieved by increasing the expression of activating transcription factor 3 (ATF3). In this study we investigated whether impaired expression of the inducible cAMP early repressor (ICER), a transcriptional antagonist of CREB, is responsible for the increased CREB activity in adipocytes of obese mice and humans.RESEARCH DESIGN AND METHODSTotal RNA and nuclear proteins were prepared from visceral adipose tissue (VAT) of human nonobese or obese subjects, and white adipose tissue (WAT) of C57Bl6-Rj mice that were fed with normal or high-fat diet for 16 weeks. The expression of genes was monitored by real-time PCR, Western blotting, and electromobility shift assays. RNA interference was used to silence the expression of Icer.RESULTSThe expression of Icer/ICER was reduced in VAT and WAT of obese humans and mice, respectively. Diminution of Icer/ICER was restricted to adipocytes and was accompanied by a rise of Atf3/ATF3 and diminution of Adipoq/ADIPOQ and Glut4/GLUT4. Silencing the expression of Icer in 3T3-L1 adipocytes mimicked the results observed in human and mice cells and hampered glucose uptake, thus confirming the requirement of Icer for appropriate adipocyte function.CONCLUSIONSImpaired expression of ICER contributes to elevation in CREB target genes and, therefore, to the development of insulin resistance in obesity.
Resumo:
The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.
Resumo:
Glucose homoeostasis necessitates the presence in the liver of the high Km glucose transporter GLUT2. In hepatocytes, we and others have demonstrated that glucose stimulates GLUT2 gene expression in vivo and in vitro. This effect is transcriptionally regulated and requires glucose metabolism within the hepatocytes. In this report, we further characterized the cis-elements of the murine GLUT2 promoter, which confers glucose responsiveness on a reporter gene coding the chloramphenicol acetyl transferase (CAT) gene. 5'-Deletions of the murine GLUT2 promoter linked to the CAT reporter gene were transfected into a GLUT2 expressing hepatoma cell line (mhAT3F) and into primary cultured rat hepatocytes, and subsequently incubated at low and high glucose concentrations. Glucose stimulates gene transcription in a manner similar to that observed for the endogenous GLUT2 mRNA in both cell types; the -1308 to -212 bp region of the promoter contains the glucose-responsive elements. Furthermore, the -1308 to -338 bp region of the promoter contains repressor elements when tested in an heterologous thymidine kinase promoter. The glucose-induced GLUT2 mRNA accumulation was decreased by dibutyryl-cAMP both in mhAT3F cells and in primary hepatocytes. A putative cAMP-responsive element (CRE) is localized at the -1074/-1068 bp region of the promoter. The inhibitory effect of cAMP on GLUT2 gene expression was observed in hepatocytes transfected with constructs containing this CRE (-1308/+49 bp fragment), as well as with constructs not containing the consensus CRE (-312/+49 bp fragment). This suggests that the inhibitory effect of cAMP is not mediated by the putative binding site located in the repressor fragment of the GLUT2 promoter. Taken together, these data demonstrate that the elements conferring glucose and cAMP responsiveness on the GLUT2 gene are located within the -312/+49 region of the promoter.
Resumo:
A sporadic case of multiple endocrine neoplasia type I with coexisting insulinoma and hyperparathyroidism was investigated in vivo and in vitro. The insulinoma was localized by somatostatin receptor scintigraphy and these receptors were functionally active. Octreotide administration decreased the basal insulin and glucagon secretion by 90 and 46%, respectively. Immunocytochemistry of the insulinoma tissue was positive for insulin, chromogranin A and neuropeptide Y. The insulinoma cells were also isolated and cultured in vitro. Incubation experiments revealed that a low glucose concentration (1 mmol/l) was sufficient to increase cytosolic free calcium and to produce a maximal glucose-induced insulin release. Northern blot analysis of RNA obtained from the tumor showed a high abundance of the low Km glucose transporter GLUT1 but no transcript for the high Km glucose transporter GLUT2. The abnormal distribution of glucose transporters probably relates to the abnormal glucose sensing of insulinoma cells, and explains their sustained insulin secretion at low glucose concentrations. Whether these abnormalities share a pathogenetic link with the presence of functionally active somatostatin receptors remains to be elucidated.
Resumo:
We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.
Resumo:
UNLABELLED: GLUT1 deficiency (GLUT1D) has recently been identified as an important cause of generalized epilepsies in childhood. As it is a treatable condition, it is crucial to determine which patients should be investigated. METHODS: We analyzed SLC2A1 for mutations in a group of 93 unrelated children with generalized epilepsies. Fasting lumbar puncture was performed following the identification of a mutation. We compared our results with a systematic review of 7 publications of series of patients with generalized epilepsies screened for SLC2A1 mutations. RESULTS: We found 2/93 (2.1%) patients with a SLC2A1 mutation. One, carrying a novel de novo deletion had epilepsy with myoclonic-atonic seizures (MAE), mild slowing of head growth, choreiform movements and developmental delay. The other, with a paternally inherited missense mutation, had childhood absence epilepsy with atypical EEG features and paroxysmal exercise-induced dyskinesia (PED) initially misdiagnosed as myoclonic seizures. Out of a total of 1110 screened patients with generalized epilepsies from 7 studies, 2.4% (29/1110) had GLUT1D. This rate was higher (5.6%) among 303 patients with early onset absence epilepsy (EOAE) from 4 studies. About 50% of GLUT1D patients had abnormal movements and 41% a family history of seizures, abnormal movements or both. CONCLUSION: GLUT1D is most likely to be found in MAE and in EOAE. The probability of finding GLUT1D in the classical idiopathic generalized epilepsies is very low. Pointers to GLUT1D include an increase in seizures before meals, cognitive impairment, or PED which can easily be overlooked.
Resumo:
The hypothalamus plays an essential role in the central nervous system of mammals by among others regulating glucose homeostasis, food intake, temperature, and to some extent blood pressure. Assessments of hypothalamic metabolism using, e.g. (1)H MRS in mouse models can provide important insights into its function. To date, direct in vivo (1)H MRS measurements of hypothalamus have not been reported. Here, we report that in vivo single voxel measurements of mouse hypothalamus are feasible using (1)H MRS at 14.1T. Localized (1)H MR spectra from hypothalamus were obtained unilaterally (2-2.2 microL, VOI) and bilaterally (4-4.4 microL) with a quality comparable to that of hippocampus (3-3.5 microL). Using LCModel, a neurochemical profile consisting of 21 metabolites was quantified for both hypothalamus and hippocampus with most of the Cramér-Rao lower bounds within 20%. Relative to the hippocampus, the hypothalamus was characterized by high gamma-aminobutryric acid and myo-inositol, and low taurine concentrations. When studying transgenic mice with no glucose transporter isoform 8 expressed, small metabolic changes were observed, yet glucose homeostasis was well maintained. We conclude that a specific neurochemical profile of mouse hypothalamus can be measured by (1)H MRS which will allow identifying and following metabolic alterations longitudinally in the hypothalamus of genetic modified models.
Resumo:
The signaling pathway that regulates glucose-stimulated insulin secretion depends on glucose metabolism, which is itself controlled by glucokinase. In a recent issue of Cell, show that altering N-glycosylation of the GLUT2 glucose transporter prevents its anchoring and retention at the cell surface; this impairs glucose uptake and insulin secretion.
Resumo:
JIP-1 is a cytoplasmic inhibitor of the c-Jun amino-terminal kinase activated pathway recently cloned from a mouse brain cDNA library. We report herein the expression cloning of a rat cDNA encoding a JIP-1-related nuclear protein from a pancreatic beta-cell cDNA library that we named IB1 for Islet-Brain 1. IB1 was isolated by its ability to bind to GTII, a cis-regulatory element of the GLUT2 promoter. The IB1 cDNA encodes a 714-amino acid protein, which differs from JIP-1 by the insertion of 47 amino acids in the carboxyl-terminal part of the protein. The remaining 667 amino acids are 97% identical to JIP-1. The 47-amino acid insertion contains a truncated phosphotyrosine interaction domain and a putative helix-loop-helix motif. Recombinant IB1 (amino acids 1-714 and 280-714) was shown to bind in vitro to GTII. Functionally IB1 transactivated the GLUT2 gene. IB1 was localized within the cytoplasm and the nucleus of insulin-secreting cells or COS-7 cells transfected with an expression vector encoding IB1. Using a heterologous GAL4 system, we localized an activation domain of IB1 within the first 280 amino acids of the protein. These data demonstrate that IB1 is a DNA-binding protein related to JIP-1, which is highly expressed in pancreatic beta-cells where it functions as a transactivator of the GLUT2 gene.