912 resultados para geological fault


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incipient Underground Coal Gasification (UCG) industry in Queensland, Australia, undertook three trial projects in two Mesozoic basins of southeast Queensland. The experiences of these three operations provide useful retrospective insight into gasifier productivity. This paper identifies key output measures of gasifier ‘success’ including output gas composition, presence of contaminants in groundwater and consistency of chamber operation. Likewise, a review of the geological and hydrogeological understanding of each site prior to gasifier commissioning was undertaken. Productivity parameters from gasification were then correlated against the level of baseline geological/hydrogeological understanding for each site. The aim of the study was to identify the optimum scope of geological and hydrogeological understanding required at the site assessment phase to ensure safe, maximum gasifier output during production phase. This approach allows identification of poor or unexpected performance that is attributable to pre-existing uncertainty. A historical review of gasifier conditions inferred from the three trial projects is presented. Hence from the Queensland experiences it is possible to identify what aspects of baseline geological understanding should be clearly understood at the site selection phase in order to limit anomalous gasifier performance and undesirable deviations, and maximise production output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to introduce the concept of hydraulic damage and its numerical integration. Unlike the common phenomenological continuum damage mechanics approaches, the procedure introduced in this paper relies on mature concepts of homogenization, linear fracture mechanics, and thermodynamics. The model is applied to the problem of fault reactivation within resource reservoirs. The results show that propagation of weaknesses is highly driven by the contrasts of properties in porous media. In particular, it is affected by the fracture toughness of host rocks. Hydraulic damage is diffused when it takes place within extended geological units and localized at interfaces and faults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a machine learning technique called anomaly detection is employed for wind turbine bearing fault detection. Basically, the anomaly detection algorithm is used to recognize the presence of unusual and potentially faulty data in a dataset, which contains two phases: a training phase and a testing phase. Two bearing datasets were used to validate the proposed technique, fault-seeded bearing from a test rig located at Case Western Reserve University to validate the accuracy of the anomaly detection method, and a test to failure data of bearings from the NSF I/UCR Center for Intelligent Maintenance Systems (IMS). The latter data set was used to compare anomaly detection with SVM, a previously well-known applied method, in rapidly finding the incipient faults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an acoustic emission (AE) based fault diagnosis for low speed bearing using multi-class relevance vector machine (RVM). A low speed test rig was developed to simulate the various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired using anAEsensor with the test bearing operating at a constant loading (5 kN) andwith a speed range from20 to 80 rpm. This study is aimed at finding a reliable method/tool for low speed machines fault diagnosis based on AE signal. In the present study, component analysis was performed to extract the bearing feature and to reduce the dimensionality of original data feature. The result shows that multi-class RVM offers a promising approach for fault diagnosis of low speed machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a conventional ac motor drive using field-oriented control, a dc-link voltage, speed, and at least two current sensors are required. Hence, in the event of sensor failure, the performance of the drive system can be severely compromised. This paper presents a sensor fault-tolerant control strategy for interior permanent-magnet synchronous motor (IPMSM) drives. Three independent observers are proposed to estimate the speed, dc-link voltage, and currents of the machine. If a sensor fault is detected, the drive system isolates the faulty sensor while retaining the remaining functional ones. The signal is then acquired from the corresponding observer in order to maintain the operation of the drive system. The experimental results provided verify the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1995 the eruption of the andesitic Soufrière Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October–December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 ocean-bottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48-channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km3. Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Research that has focused on the ability of self-report assessment tools to predict crash outcomes has proven to be mixed. As a result, researchers are now beginning to explore whether examining culpability of crash involvement can subsequently improve this predictive efficacy. This study reports on the application of the Manchester Driver Behaviour Questionnaire (DBQ) to predict crash involvement among a sample of general Queensland motorists, and in particular, whether including a crash culpability variable improves predictive outcomes. Surveys were completed by 249 general motorists on-line or via a pen-and-paper format. Results: Consistent with previous research, a factor analysis revealed a three factor solution for the DBQ accounting for 40.5% of the overall variance. However, multivariate analysis using the DBQ revealed little predictive ability of the tool to predict crash involvement. Rather, exposure to the road was found to be predictive of crashes. An analysis into culpability revealed 88 participants reported being “at fault” for their most recent crash. Corresponding between and multi-variate analyses that included the culpability variable did not result in an improvement in identifying those involved in crashes. Conclusions: While preliminary, the results suggest that including crash culpability may not necessarily improve predictive outcomes in self-report methodologies, although it is noted the current small sample size may also have had a deleterious effect on this endeavour. This paper also outlines the need for future research (which also includes official crash and offence outcomes) to better understand the actual contribution of self-report assessment tools, and culpability variables, to understanding and improving road safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.