932 resultados para genesis of coal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species and nitrogen species have been implicated in the pathogenesis of coal dust-induced toxicity. The present study investigated several oxidative stress biomarkers (Contents of lipoperoxidation = TBARS, reduced = GSH, oxidized = GSSG and total glutathione = TG, alpha-tocopherol, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of three different groups (n = 20 each) exposed to airborne contamination associated with coal mining activities: underground workers directly exposed, surface workers indirectly exposed, residents indirectly exposed (subjects living near the mines), and controls (non-exposed subjects). Plasma TBARS were increased and whole blood TG and GSH levels were decreased in all groups compared to controls. Plasma alpha-tocopherol contents showed approximately half the values in underground workers compared to controls. GST activity was induced in workers and also in residents at the vicinity of the mining plant, whilst CAT activity was induced only in mine workers. SOD activity was decreased in all groups examined, while GPx activity showed decreased values only in underground miners, and GR did not show any differences among the groups. The results showed that subjects directly and indirectly exposed to coal dusts face an oxidative stress condition. They also indicate that people living in the vicinity of the mine plant are in health risk regarding coal mining-related diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NMDA receptor (NMDAR) channel has been proposed to function as a coincidence-detection mechanism for afferent and reentrant signals, supporting conscious perception, learning, and memory formation. In this paper we discuss the genesis of distorted perceptual states induced by subanesthetic doses of ketamine, a well-known NMDA antagonist. NMDAR blockage has been suggested to perturb perceptual processing in sensory cortex, and also to decrease GABAergic inhibition in limbic areas (leading to an increase in dopamine excitability). We propose that perceptual distortions and hallucinations induced by ketamine blocking of NMDARs are generated by alternative signaling pathways, which include increase of excitability in frontal areas, and glutamate binding to AMPA in sensory cortex prompting Ca++ entry through voltage-dependent calcium channels (VDCCs). This mechanism supports the thesis that glutamate binding to AMPA and NMDARs at sensory cortex mediates most normal perception, while binding to AMPA and activating VDCCs mediates some types of altered perceptual states. We suggest that Ca++ metabolic activity in neurons at associative and sensory cortices is an important factor in the generation of both kinds of perceptual consciousness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from+1.0 to+2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work discusses the internal structuring processes of leading companies when adopting green supply chain management (GSCM) practices. A multiple case study approach was adopted as the research methodology, with four large Brazilian companies that are leaders in their market segments. The introduction of green products is a key step towards initiating concern for the environment among suppliers and customers. This study's results show the importance of having green teams, a dedicated functional area, and/or green jobs that support the discussion of environmental management among a business and beyond. The practical results of this study offer new insights into the behavior of companies that are adopting GSCM practices, thereby generating new evidence for the extension of GSCM theory. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Batch combustion of fixed beds of coal, bagasse and blends thereof took place in a pre-heated two-stage electric laboratory furnace, under high-heating rates. The average input fuel/air equivalence ratios were similar for all fuels. The primary and secondary furnace temperatures were varied from 800 degrees C to 1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on the emissions from the two fuels were assessed. Furnace effluents were analyzed for carbon dioxide and for products of incomplete combustion (PIC) including CO, volatile and semi-volatile hydrocarbons, as well as particulate matter. Results showed that whereas CO2 was generated during both the observed sequential volatile matter and char combustion phases of the fuels, PICs were only generated during the volatile matter combustion phase. CO2 emissions were the highest from coal, whereas CO and other PIC emissions were the highest from bagasse. Under this particular combustion configuration, combustion of the volatile matter of the blends resulted in lower yields of PIC, than combustion of the volatiles of the neat fuels. Though CO and unburned hydrocarbons from coal as well as from the blends did not exhibit a clear trend with furnace temperature, such emissions from bagasse clearly increased with temperature. The presence of the secondary furnace (afterburner) typically reduced PIC, by promoting further oxidation of the primary furnace effluents. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on emissions of unburned hydrocarbon species from batch combustion of fixed beds of coal, sugar-cane bagasse, and blends thereof in a pre-heated two-stage laboratory furnace operated in the temperature range of 800-1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on emissions of pollutants were assessed. Furnace effluents were analyzed for products of incomplete combustion (PICs) including CO, volatile and semi-volatile hydrocarbons, and particulate matter, as has been reported in Ref. [1]. Emitted unburned hydrocarbons include traces of potentially health-hazardous Polycyclic Aromatic Hydrocarbons (PAHs), which are the focus of this work. Under the batch combustion conditions implemented herein, PAH were only generated during the volatile combustion phase of the fuels. The most prevalent species were in descending order: naphthalene, acenaphthylene, phenanthrene, fluoranthene, pyrene, dibenzofuran, benzofuran, byphenyl, fluorene, 9H-fluoren-9-one, acephenantrylene, benzo[b] fluoranthene, 1-methyl-naphthalene; 2-methyl-naphthalene, benz[a] anthracene and benzo[a] pyrene. PAH yields were the highest from combustion of neat bagasse. Combustion of the blends resulted in lower yields of PAH, than combustion of either of their neat fuel constituents. Increasing the furnace operating temperature enhanced the PAH emissions from bagasse, but had little effect on those from the coal or from the blends. Flue gas treatment in a secondary-stage furnace, upon with additional air, typically reduced PAH yields by promoting oxidation of the primary-stage furnace effluents. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1β and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold) using caspase-1 deficient mice (casp1-/-). Results Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE2 and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL)-1β and cyclooxygenase (COX)-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNF)α and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1β and PGE2 did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-α and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1β was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE2 production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1β maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE2 production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.