986 resultados para generalized assignment problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In clinical practice, a classification of seizures based on clinical signs and symptoms leads to an improved understanding of epilepsy-related issues and therefore strongly contributes to a better patient care. The inverse problem involves inferring the anatomical brain localization of a seizure from the scalp surface EEG, a concept we apply here to correlate seizure origin with seizure semiology. The spheres of sensorium, motor features, consciousness changes and autonomic alterations during ictal and postictal manifestations are reviewed, including several subdivisions used to better categorize particular features. Particular attention is given to behavioral features, as well as to features occurring in idiopathic generalized epileptic syndromes and psychogenic nonepileptic spells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new aggregation method for decision making is presented by using induced aggregation operators and the index of maximum and minimum level. Its main advantage is that it can assess complex reordering processes in the aggregation that represent complex attitudinal characters of the decision maker such as psychological or personal factors. A wide range of properties and particular cases of this new approach are studied. A further generalization by using hybrid averages and immediate weights is also presented. The key issue in this approach against the previous model is that we can use the weighted average and the ordered weighted average in the same formulation. Thus, we are able to consider the subjective attitude and the degree of optimism of the decision maker in the decision process. The paper ends with an application in a decision making problem based on the use of the assignment theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new model for dealing with decision making under risk by considering subjective and objective information in the same formulation is here presented. The uncertain probabilistic weighted average (UPWA) is also presented. Its main advantage is that it unifies the probability and the weighted average in the same formulation and considering the degree of importance that each case has in the analysis. Moreover, it is able to deal with uncertain environments represented in the form of interval numbers. We study some of its main properties and particular cases. The applicability of the UPWA is also studied and it is seen that it is very broad because all the previous studies that use the probability or the weighted average can be revised with this new approach. Focus is placed on a multi-person decision making problem regarding the selection of strategies by using the theory of expertons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four classes of variables are apparent in the problem of scour around bridge piers and abutments--geometry of piers and abutments, stream-flow characteristics, sediment characteristics, and geometry of site. The laboratory investigation, from its inception, has been divided into four phases based on these classes. In each phase the variables in three of the classes are held constant and those in the pertinent class are varied. To date, the first three phases have been studied. Typical scour bole patterns related to the geometry of the pier or abutment have been found. For equilibrium conditions of scour with uniform sand, the velocity of flow and the sand size do not appear to have any measurable effects on the depth of scour. This result is especially encouraging in the search for correlation between model and prototype since it would indicate that, primarily, only the depth of flow might be involved in the scale effect. The technique of model testing has been simplified, therefore, because rate of sediment transportation does not need to be scaled. Prior to the establishment of equilibrium conditions, however, depths of scour in excess of those for equilibrium conditions have been found. A concept of active scour as an imbalance between sediment transport capacity and rate of sediment supply has been used to explain the laboratory observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random problem distributions have played a key role in the study and design of algorithms for constraint satisfaction and Boolean satisfiability, as well as in ourunderstanding of problem hardness, beyond standard worst-case complexity. We consider random problem distributions from a highly structured problem domain that generalizes the Quasigroup Completion problem (QCP) and Quasigroup with Holes (QWH), a widely used domain that captures the structure underlying a range of real-world applications. Our problem domain is also a generalization of the well-known Sudoku puz- zle: we consider Sudoku instances of arbitrary order, with the additional generalization that the block regions can have rectangular shape, in addition to the standard square shape. We evaluate the computational hardness of Generalized Sudoku instances, for different parameter settings. Our experimental hardness results show that we can generate instances that are considerably harder than QCP/QWH instances of the same size. More interestingly, we show the impact of different balancing strategies on problem hardness. We also provide insights into backbone variables in Generalized Sudoku instances and how they correlate to problem hardness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the induced generalized ordered weighted averaging (IGOWA) operator. It is a new aggregation operator that generalizes the OWA operator by using the main characteristics of two well known aggregation operators: the generalized OWA and the induced OWA operator. Then, this operator uses generalized means and order inducing variables in the reordering process. With this formulation, we get a wide range of aggregation operators that include all the particular cases of the IOWA and the GOWA operator, and a lot of other cases such as the induced ordered weighted geometric (IOWG) operator and the induced ordered weighted quadratic averaging (IOWQA) operator. We further generalize the IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA operator. Finally, we also develop a numerical example of the new approach in a financial decision making problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le problème d'allocation de postes d'amarrage (PAPA) est l'un des principaux problèmes de décision aux terminaux portuaires qui a été largement étudié. Dans des recherches antérieures, le PAPA a été reformulé comme étant un problème de partitionnement généralisé (PPG) et résolu en utilisant un solveur standard. Les affectations (colonnes) ont été générées a priori de manière statique et fournies comme entrée au modèle %d'optimisation. Cette méthode est capable de fournir une solution optimale au problème pour des instances de tailles moyennes. Cependant, son inconvénient principal est l'explosion du nombre d'affectations avec l'augmentation de la taille du problème, qui fait en sorte que le solveur d'optimisation se trouve à court de mémoire. Dans ce mémoire, nous nous intéressons aux limites de la reformulation PPG. Nous présentons un cadre de génération de colonnes où les affectations sont générées de manière dynamique pour résoudre les grandes instances du PAPA. Nous proposons un algorithme de génération de colonnes qui peut être facilement adapté pour résoudre toutes les variantes du PAPA en se basant sur différents attributs spatiaux et temporels. Nous avons testé notre méthode sur un modèle d'allocation dans lequel les postes d'amarrage sont considérés discrets, l'arrivée des navires est dynamique et finalement les temps de manutention dépendent des postes d'amarrage où les bateaux vont être amarrés. Les résultats expérimentaux des tests sur un ensemble d'instances artificielles indiquent que la méthode proposée permet de fournir une solution optimale ou proche de l'optimalité même pour des problème de très grandes tailles en seulement quelques minutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Doktorarbeit wird eine akkurate Methode zur Bestimmung von Grundzustandseigenschaften stark korrelierter Elektronen im Rahmen von Gittermodellen entwickelt und angewandt. In der Dichtematrix-Funktional-Theorie (LDFT, vom englischen lattice density functional theory) ist die Ein-Teilchen-Dichtematrix γ die fundamentale Variable. Auf der Basis eines verallgemeinerten Hohenberg-Kohn-Theorems ergibt sich die Grundzustandsenergie Egs[γgs] = min° E[γ] durch die Minimierung des Energiefunktionals E[γ] bezüglich aller physikalischer bzw. repräsentativer γ. Das Energiefunktional kann in zwei Beiträge aufgeteilt werden: Das Funktional der kinetischen Energie T[γ], dessen lineare Abhängigkeit von γ genau bekannt ist, und das Funktional der Korrelationsenergie W[γ], dessen Abhängigkeit von γ nicht explizit bekannt ist. Das Auffinden präziser Näherungen für W[γ] stellt die tatsächliche Herausforderung dieser These dar. Einem Teil dieser Arbeit liegen vorausgegangene Studien zu Grunde, in denen eine Näherung des Funktionals W[γ] für das Hubbardmodell, basierend auf Skalierungshypothesen und exakten analytischen Ergebnissen für das Dimer, hergeleitet wird. Jedoch ist dieser Ansatz begrenzt auf spin-unabhängige und homogene Systeme. Um den Anwendungsbereich von LDFT zu erweitern, entwickeln wir drei verschiedene Ansätze zur Herleitung von W[γ], die das Studium von Systemen mit gebrochener Symmetrie ermöglichen. Zuerst wird das bisherige Skalierungsfunktional erweitert auf Systeme mit Ladungstransfer. Eine systematische Untersuchung der Abhängigkeit des Funktionals W[γ] von der Ladungsverteilung ergibt ähnliche Skalierungseigenschaften wie für den homogenen Fall. Daraufhin wird eine Erweiterung auf das Hubbardmodell auf bipartiten Gittern hergeleitet und an sowohl endlichen als auch unendlichen Systemen mit repulsiver und attraktiver Wechselwirkung angewandt. Die hohe Genauigkeit dieses Funktionals wird aufgezeigt. Es erweist sich jedoch als schwierig, diesen Ansatz auf komplexere Systeme zu übertragen, da bei der Berechnung von W[γ] das System als ganzes betrachtet wird. Um dieses Problem zu bewältigen, leiten wir eine weitere Näherung basierend auf lokalen Skalierungseigenschaften her. Dieses Funktional ist lokal bezüglich der Gitterplätze formuliert und ist daher anwendbar auf jede Art von geordneten oder ungeordneten Hamiltonoperatoren mit lokalen Wechselwirkungen. Als Anwendungen untersuchen wir den Metall-Isolator-Übergang sowohl im ionischen Hubbardmodell in einer und zwei Dimensionen als auch in eindimensionalen Hubbardketten mit nächsten und übernächsten Nachbarn. Schließlich entwickeln wir ein numerisches Verfahren zur Berechnung von W[γ], basierend auf exakten Diagonalisierungen eines effektiven Vielteilchen-Hamilton-Operators, welcher einen von einem effektiven Medium umgebenen Cluster beschreibt. Dieser effektive Hamiltonoperator hängt von der Dichtematrix γ ab und erlaubt die Herleitung von Näherungen an W[γ], dessen Qualität sich systematisch mit steigender Clustergröße verbessert. Die Formulierung ist spinabhängig und ermöglicht eine direkte Verallgemeinerung auf korrelierte Systeme mit mehreren Orbitalen, wie zum Beispiel auf den spd-Hamilton-Operator. Darüber hinaus berücksichtigt sie die Effekte kurzreichweitiger Ladungs- und Spinfluktuationen in dem Funktional. Für das Hubbardmodell wird die Genauigkeit der Methode durch Vergleich mit Bethe-Ansatz-Resultaten (1D) und Quanten-Monte-Carlo-Simulationen (2D) veranschaulicht. Zum Abschluss wird ein Ausblick auf relevante zukünftige Entwicklungen dieser Theorie gegeben.