979 resultados para gene transcription


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expression of inducible nitric oxide synthase (NOS2) is complex and is regulated in part by gene transcription. In this investigation we studied the regulation of NOS2 in a human liver epithelial cell line (AKN-1) which expresses high levels of NOS2 mRNA and protein in response to tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma (cytokine mix, CM). Nuclear run-on analysis revealed that CM transcriptionally activated the human NOS2 gene. To delineate the cytokine-responsive regions of the human NOS2 promoter, we stimulated AKN-1 cells with CM following transfection of NOS2 luciferase constructs. Analysis of the first 3.8 kb upstream of the NOS2 gene demonstrated basal promoter activity but failed to show any cytokine-inducible activity. However, 3- to 5-fold inductions of luciferase activity were seen in constructs extending up to -5.8 and -7.0 kg, and a 10-fold increase was seen upon transfection of a -16 kb construct. Further analysis of various NOS2 luciferase constructs ligated upstream of the thymidine kinase promoter identified three regions containing cytokine-responsive elements in the human NOS2 gene: -3.8 to -5.8, -5.8 to -7.0, and -7.0 to -16 kb. These results are in marked contrast with the murine macrophage NOS2 promoter in which only 1 kb of the proximal 5' flanking region is necessary to confer inducibility to lipopolysaccharide and interferon gamma. These data demonstrate that the human NOS2 gene is transcriptionally regulated by cytokines and identify multiple cytokine-responsive regions in the 5' flanking region of the human NOS2 gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ceramide has been identified as a potential second messenger that may mediate cell differentiation and apoptosis after exposure to hormonal agonists such as 1 alpha, 25-dihydroxyvitamin D3, tumor necrosis factor alpha, or gamma-interferon. The secondary cellular events that follow ceramide generation remain undefined. We report that in NIH WT-3T3 cells, ceramide induces an enhancement of gene transcription of alpha B-crystallin, a small heat shock protein. The levels of alpha B-crystallin, as measured by Northern blot and immunoblot analyses, were increased by the addition of an exogenous short-chain ceramide, N-acetylsphingosine, or by increasing endogenous intracellular ceramide by inhibition of glucosylceramide synthase. Similar effects were not seen in the expression of the closely related gene, Hsp25. To ascertain whether ceramide-mediated gene transcription was a feature of the heat shock response, cell ceramide was measured in heat shocked cells and observed to be elevated 2-fold immediately upon the return of cells to 37 degrees C. Thus ceramide formed after heat shock treatment of 3T3 cells may mediate the transcription events associated with the cell stress response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

mRNAs for acetylcholine receptor genes are highly concentrated in the endplate region of adult skeletal muscle largely as a result of a transcription restricted to the subneural nuclei. To identify the regulatory elements involved, we employed a DNA injection of a plasmid containing a fragment of the acetylcholine receptor delta-subunit gene promoter (positions -839 to +45) linked to the reporter gene lacZ with a nuclear localization signal. Injection of the wild-type construct into mouse leg muscles yielded preferential expression of the reporter gene in the synaptic region. Analysis of various mutant promoters resulted in the identification of a DNA element (positions -60 to -49), referred to as the N box, that plays a critical role in subneural expression. Disruption of this 12-bp element in the context of a mouse delta-subunit promoter from positions -839 to +45 gives widespread expression of the reporter gene throughout the entire muscle fiber, indicating that this element is a silencer that represses delta-subunit gene transcription in extrajunctional areas. On the other hand, this element inserted upstream of a heterologous basal promoter preferentially enhances expression in the endplate region. This element therefore regulates the restricted expression of the delta-subunit gene both as an enhancer at the endplate level and as a silencer in extrajunctional areas. Furthermore, gel-shift experiments with mouse muscle extracts reveal an activity that specifically binds the 6-bp sequence TTCCGG of this element, suggesting that a transcription factor(s) controls the expression of the delta-subunit gene via this element.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein-protein interactions involving specific transactivation domains play a central role in gene transcription and its regulation. The promoter-specific transcription factor Sp1 contains two glutamine-rich transcriptional activation domains (A and B) that mediate direct interactions with the transcription factor TFIID complex associated with RNA polymerase II and synergistic effects involving multiple Sp1 molecules. In the present study, we report the complementary DNA sequence for an alternatively spliced form of mouse Sp1 (mSp1-S) that lacks one of the two glutamine-rich activation regions present in the full-length protein. Corresponding transcripts were identified in mouse tissues and cell lines, and an Sp1-related protein identical in size to that predicted for mSp1-S was detected in mouse nuclear extracts. Cotransfection analysis revealed that mSp1-S lacks appreciable activity at promoters containing a single Sp1 response element but is active when multiple Sp1 sites are present, suggesting synergistic interactions between multiple mSp1-S molecules. The absence of a single glutamine-rich domain does not fully explain the properties of the smaller protein and indicates that additional structural features account for its unique transcriptional activity. The functional implications of this alternatively spliced form of Sp1 are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pax5 transcription factor BSAP (B-cell-specific activator protein) is known to bind to and repress the activity of the immunoglobulin heavy chain 3' alpha enhancer. We have detected an element--designated alpha P--that lies approximately 50 bp downstream of the BSAP binding site 1 and is required for maximal enhancer activity. In vitro binding experiments suggest that the 40-kDa protein that binds to this element (NF-alpha P) is a member of the Ets family present in both B-cell and plasma-cell nuclei. However, in vivo footprint analysis suggests that the alpha P site is occupied only in plasma cells, whereas the BSAP site is occupied in B cells but not in plasma cells. When Pax5 binding to the enhancer in B cells was blocked in vivo by transfection with a triple-helix-forming oligonucleotide an alpha P footprint appeared and endogenous immunoglobulin heavy chain transcripts increased. The triple-helix-forming oligonucleotide also increased enhancer activity of a transfected construct in B cells, but only when the alpha P site was intact. Pax5 thus regulates the 3' alpha enhancer and immunoglobulin gene transcription by blocking activation by NF-alpha P.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As previously observed for FK506, we report here that cyclosporin A (CsA) treatment of mouse fibroblast cells stably transfected with the mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter plasmid (LMCAT cells) results in potentiation of dexamethasone (Dex)-induced CAT gene expression. Potentiation by CsA is observed in cells treated with 10-100 nM Dex but not in cells treated with 1 microM Dex, a concentration of hormone which results in maximum CAT activity. At 10 nM Dex, 1-5 microM CsA provokes an approximately 50-fold increase in CAT gene transcription, compared with transcription induced by Dex alone. No induction of CAT gene expression is observed in cells treated with CsA or FK506 in the absence of Dex. The antisteroid RU 486 abolishes effects obtained in the presence of Dex. Using a series of CsA, as well as FK506, analogs, including some devoid of calcineurin phosphatase inhibition activity, we conclude that the potentiation effects of these drugs on Dex-induced CAT gene expression in LMCAT cells do not occur through a calcineurin-mediated pathway. Western-blotting experiments following immunoprecipitation of glucocorticosteroid receptor (GR) complexes resulted in coprecipitation of GR, heat shock protein hsp90 and two immunophilins: the FK506-binding protein FKBP59 and the CsA-binding protein cyclophilin 40 (CYP40). Two separate immunophilin-hsp90 complexes are present in LMCAT cells: one containing CYP40-hsp90, the other FKBP59-hsp90. Thus, both FKBP59 and CYP40 can be classified as hsp-binding immunophilins, and their possible involvement as targets of immunosuppressants potentiating the GR-mediated transcriptional activity is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5′UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being bothmRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells.Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associatedwith the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antigenic variation of the intestinal protozoan parasite Giardia lamblia is caused by an exchange of the parasite's variant surface protein (VSP) coat. Many investigations on antigenic variation were performed with G. lamblia clone GS/M-83-H7 which produces surface antigen VSP H7. To generate novel information on giardial vsp gene transcription, vsp RNA levels were assessed by quantitative reverse transcription-(RT)-PCR in both axenic VSP H7-type trophozoites and subvariants obtained after negative selection of GS/M-83-H7 trophozoites by treatment with a cytotoxic, VSP H7-specific monoclonal antibody. Our investigation was not restricted to the assessment of the sense vsp transcript levels but also included an approach aimed at the detection of complementary antisense vsp transcripts within the two trophozoite populations. We found that sense vsp H7 RNA predominated in VSP H7-type trophozoites while sense RNA from only one (vsp IVg) of 8 subvariant vsp genes totally analysed predominated in subvariant-type trophozoites. Interestingly, the two trophozoite populations exhibited a similar relative distribution regarding the vsp H7 and vsp IVg antisense RNA molecules. An analogous sense versus antisense RNA pattern was also observed when the transcripts of gene cwp 1 (encoding cyst wall protein 1) were investigated. Here, both types of RNA molecules only appeared after cwp 1 had been induced through in vitro encystation of the parasite. These findings for the first time demonstrated that giardial antisense RNA production did not occur in a constitutive manner but was directly linked to complementary sense RNA production after activation of the respective gene systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hemps, a novel epidermal growth factor (EGF)-like protein, is expressed during larval development and early metamorphosis in the ascidian Herdmania curvata and plays a direct role in triggering metamorphosis. In order to identify downstream genes in the Hemps pathway we used a gene expression profiling approach, in which we compared post-larvae undergoing normal metamorphosis with larval metamorphosis blocked with an anti-Hemps antibody. Molecular profiling revealed that there are dynamic changes in gene expression within the first 30 minutes of normal metamorphosis with a significant portion of the genome (approximately 49%) being activated or repressed. A more detailed analysis of the expression of 15 of these differentially expressed genes through embryogenesis, larval development and metamorphosis revealed that while there is a diversity of temporal expression patterns, a number of genes are transiently expressed during larval development and metamorphosis. These and other differentially expressed genes were localised to a range of specific cell and tissue types in Herdmania larvae and post-larvae. The expression of approximately 24% of the genes that were differentially expressed during early metamorphosis was affected in larvae treated with the anti-Hemps antibody. Knockdown of Hemps activity affected the expression of a range of genes within 30 minutes of induction, suggesting that the Hemps pathway directly regulates early response genes at metamorphosis. In most cases, it appears that the Hemps pathway contributes to the modulation of gene expression, rather than initial gene activation or repression. A total of 151 genes that displayed the greatest alterations in expression in response to anti-Hemps antibody were sequenced. These genes were implicated in a range of developmental and physiological roles, including innate immunity, signal transduction and in the regulation of gene transcription. These results suggest that there is significant gene activity during the very early stages of H. curvata metamorphosis and that the Hemps pathway plays a key role in regulating the expression of many of these genes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During mammalian sexual development, the SOX9 transcription factor up-regulates expression of the gene encoding anti-Mullerian hormone (AMH), but in chickens, Sox9 gene expression reportedly occurs after the onset of Amh expression. Here, we examined expression of the related gene Sox8 in chicken embryonic gonads during the sex-determining period. We found that cSox8 is expressed at similar levels in both sexes at embryonic day 6 and 7, and only at the anterior tip of the gonad, suggesting that SOX8 is not responsible for the sex-specific increase in cAmh gene expression at these stages. We also found that several other chicken Sox genes (cSox3, cSox4 and cSox11) are expressed in embryonic gonads, but at similar levels in both sexes. Our data suggest that the molecular mechanisms involved in the regulation of Amh genes of mouse and chicken are not conserved, despite similar patterns of Amh expression in both species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diversity of T cell receptors (TCR) and immunoglobulins (Ig) is generated by V(D)J recombination of antigen receptor (AgR) loci. The Tcra-Tcrd locus is of particular interest because it displays a nested organization of Tcrd and Tcra gene segments and V(D)J recombination follows an intricate developmental program to assemble both TCRδ and TCRα repertoires. However, the mechanisms that dictate the developmental regulation of V(D)J recombination of the Tcra-Tcrd locus remain unclear.

We have previously shown that CCCTC-binding factor (CTCF) regulates Tcra gene transcription and rearrangement through organizing chromatin looping between CTCF- binding elements (CBEs). This study is one of many showing that CTCF functions as a chromatin organizer and transcriptional regulator genome-wide. However, detailed understanding of the impact of specific CBEs is needed to fully comprehend the biological function of CTCF and how CTCF influences the generation of the TCR repertoire during thymocyte development. Thus, we generated several mouse models with genetically modified CBEs to gain insight into the CTCF-dependent regulation of the Tcra-Tcrd locus. We revealed a CTCF-dependent chromatin interaction network at the Tcra-Tcrd locus in double-negative thymocytes. Disruption of a discrete chromatin loop encompassing Dδ, Jδ and Cδ gene segments allowed a single Vδ segment to frequently contact and rearrange to diversity and joining gene segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulates TCRδ diversity and indirectly regulates TCRα diversity. In addition, we showed that insertion of an ectopic CBE can modify chromatin interactions and disrupt the rearrangement of particular Vδ gene segments. Finally, we investigated the role of YY1 in early T cell development by conditionally deleting YY1 in developing thymocytes. We found that early ablation of YY1 caused severe developmental defects in the DN compartment due to a dramatic increase in DN thymocyte apoptosis. Furthermore, late ablation of YY1 resulted in increased apoptosis of DP thymocytes and a restricted TCRα repertoire. Mechanistically, we showed that p53 was upregulated in both DN and DP YY1-deficient thymocytes. Eliminating p53 in YY1-deficient thymocytes rescued the survival and developmental defects, indicating that these YY1-dependent defects were p53-mediated. We conclude that YY1 is required to maintain cell viability during thymocyte development by thwarting the accumulation of p53.

Overall, this thesis work has shown that CTCF-dependent looping provides a central framework for lineage- and developmental stage-specific regulation of Tcra-Tcrd gene expression and rearrangements. In addition, we identified YY1 as a novel regulator of thymocyte viability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertebrate genomes are organised into a variety of nuclear environments and chromatin states that have profound effects on the regulation of gene transcription. This variation presents a major challenge to the expression of transgenes for experimental research, genetic therapies and the production of biopharmaceuticals. The majority of transgenes succumb to transcriptional silencing by their chromosomal environment when they are randomly integrated into the genome, a phenomenon known as chromosomal position effect (CPE). It is not always feasible to target transgene integration to transcriptionally permissive “safe harbour” loci that favour transgene expression, so there remains an unmet need to identify gene regulatory elements that can be added to transgenes which protect them against CPE. Dominant regulatory elements (DREs) with chromatin barrier (or boundary) activity have been shown to protect transgenes from CPE. The HS4 element from the chicken beta-globin locus and the A2UCOE element from a human housekeeping gene locus have been shown to function as DRE barriers in a wide variety of cell types and species. Despite rapid advances in the profiling of transcription factor binding, chromatin states and chromosomal looping interactions, progress towards functionally validating the many candidate barrier elements in vertebrates has been very slow. This is largely due to the lack of a tractable and efficient assay for chromatin barrier activity. In this study, I have developed the RGBarrier assay system to test the chromatin barrier activity of candidate DREs at pre-defined isogenic loci in human cells. The RGBarrier assay consists in a Flp-based RMCE reaction for the integration of an expression construct, carrying candidate DREs, in a pre-characterised chromosomal location. The RGBarrier system involves the tracking of red, green and blue fluorescent proteins by flow cytometry to monitor on-target versus off-target integration and transgene expression. The analysis of the reporter (GFP) expression for several weeks gives a measure of the protective ability of each candidate elements from chromosomal silencing. This assay can be scaled up to test tens of new putative barrier elements in the same chromosomal context in parallel. The defined chromosomal contexts of the RGBarrier assays will allow for detailed mechanistic studies of chromosomal silencing and DRE barrier element action. Understanding these mechanisms will be of paramount importance for the design of specific solutions for overcoming chromosomal silencing in specific transgenic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.