495 resultados para galaxies: starburst
The gas mass fraction and the dynamical state in x-ray luminous clusters of galaxies at low redshift
Resumo:
Gli ammassi di galassie sono le strutture gravitazionalmente legate con le più profonde buche di potenziale, pertanto è previsto che questi contengano una frazione di barioni non molto diversa da quella cosmologica. Con l’introduzione di modelli sempre più accurati di fisica barionica all’interno di simulazioni idrodinamiche è stato possibile predire la percentuale cosmica di barioni presente negli ammassi di galassie. Unendo questi modelli previsionali con misure della frazione di gas in ammassi e informazioni sulla densità di barioni dell’Universo si può ottenere una stima della densità di materia cosmica Ωm. L'obiettivo di questo lavoro di Tesi è la stima di Ωm a partire dalla frazione di gas osservata in questi sistemi. Questo lavoro era stato già fatto in precedenza, ma tenendo in considerazione solo gli ammassi più massivi e dinamicamente rilassati. Usando parametri che caratterizzano la morfologia della distribuzione di brillanza superficiale nei raggi X, abbiamo classificato i nostri oggetti come rilassati o disturbati, laddove presentassero evidenze di recenti attività di interazione. Abbiamo dunque valutato l’impatto degli oggetti disturbati sulla stima del parametro cosmologico Ωm, computando il Chi2 tra la frazione di massa barionica nell’Universo e quella da noi ricavata. Infine abbiamo investigato una relazione tra il valore della frazione di gas degli ammassi rilassati e quello dei disturbati, in modo da correggere quindi questi ultimi, riportandoli nei dintorni del valore medio per i rilassati e usarli per ampliare il campione e porre un vincolo più stringente su Ωm. Anche con il limitato campione a nostra disposizione, è stato possibile porre un vincolo più stretto su Ωm, utilizzando un maggior numero di oggetti e riducendo così l’errore statistico.
Resumo:
I Nuclei Galattici Attivi (AGN) sono sorgenti luminose e compatte alimentate dall'accrescimento di materia sul buco nero supermassiccio al centro di una galassia. Una frazione di AGN, detta "radio-loud", emette fortemente nel radio grazie a getti relativistici accelerati dal buco nero. I Misaligned AGN (MAGN) sono sorgenti radio-loud il cui getto non è allineato con la nostra linea di vista (radiogalassie e SSRQ). La grande maggioranza delle sorgenti extragalattiche osservate in banda gamma sono blazar, mentre, in particolare in banda TeV, abbiamo solo 4 MAGN osservati. Lo scopo di questa tesi è valutare l'impatto del Cherenkov Telescope Array (CTA), il nuovo strumento TeV, sugli studi di MAGN. Dopo aver studiato le proprietà dei 4 MAGN TeV usando dati MeV-GeV dal telescopio Fermi e dati TeV dalla letteratura, abbiamo assunto come candidati TeV i MAGN osservati da Fermi. Abbiamo quindi simulato 50 ore di osservazioni CTA per ogni sorgente e calcolato la loro significatività. Assumendo una estrapolazione diretta dello spettro Fermi, prevediamo la scoperta di 9 nuovi MAGN TeV con il CTA, tutte sorgenti locali di tipo FR I. Applicando un cutoff esponenziale a 100 GeV, come forma spettrale più realistica secondo i dati osservativi, prevediamo la scoperta di 2-3 nuovi MAGN TeV. Per quanto riguarda l'analisi spettrale con il CTA, secondo i nostri studi sarà possibile ottenere uno spettro per 5 nuove sorgenti con tempi osservativi dell'ordine di 250 ore. In entrambi i casi, i candidati migliori risultano essere sempre sorgenti locali (z<0.1) e con spettro Fermi piatto (Gamma<2.2). La migliore strategia osservativa per ottenere questi risultati non corrisponde con i piani attuali per il CTA che prevedono una survey non puntata, in quanto queste sorgenti sono deboli, e necessitano di lunghe osservazioni puntate per essere rilevate (almeno 50 ore per studi di flusso integrato e 250 per studi spettrali).
Resumo:
The width of the 21 cm line (HI) emitted by spiral galaxies depends on the physical processes that release energy in the Interstellar Medium (ISM). This quantity is called velocity dispersion (σ) and it is proportional first of all to the thermal kinetic energy of the gas. The accepted theoretical picture predicts that the neutral hydrogen component (HI) exists in the ISM in two stable phases: a cold one (CNM, with σ~0.8 km/s) and a warm one (WNM, with σ~8 km/s). However, this is called into question by the observation that the HI gas has usually larger velocity dispersions. This suggests the presence of turbulence in the ISM, although the energy sources remain unknown. In this thesis we want to shed new light on this topic. We have studied the HI line emission of two nearby galaxies: NGC6946 and M101. For the latter we used new deep observations obtained with the Westerbork radio interferometer. Through a gaussian fitting procedure, we produced dispersion maps of the two galaxies. For both of them, we compared the σ values measured in the spiral arms with those in the interarms. In NGC6946 we found that, in both arms and interarms, σ grows with the column density, while we obtained the opposite for M 101. Using a statistical analysis we did not find a significant difference between arm and interarm dispersion distributions. Producing star formation rate density maps (SFRD) of the galaxies, we studied their global and local relations with the HI kinetic energy, as inferred from the measured dispersions. For NGC6946 we obtained a good log-log correlation, in agreement with a simple model of supernova feedback driven turbulence. This shows that in this galaxy turbulent motions are mainly induced by the stellar activity. For M 101 we did not find an analogous correlation, since the gas kinetic energy appears constant with the SFRD. We think that this may indicate that in this galaxy turbulence is driven also by accretion of extragalactic material.
Resumo:
Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.
Resumo:
The physical validity of the hypothesis of (redshift-dependent) luminosity evolution in galaxies is tested by statistical analysis of an intensively studied complete high-redshift sample of normal galaxies. The necessity of the evolution hypothesis in the frame of big-bang cosmology is confirmed at a high level of statistical significance; however, this evolution is quantitatively just as predicted by chronometric cosmology, in which there is no such evolution. Since there is no direct observational means to establish the evolution postulated in big-bang studies of higher-redshift galaxies, and the chronometric predictions involve no adjustable parameters (in contrast to the two in big-bang cosmology), the hypothesized evolution appears from the standpoint of conservative scientific methodology as a possible theoretical artifact.
Resumo:
It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch.
Resumo:
Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.
Resumo:
The membrane excitability of cholinergic (starburst) amacrine cells was studied in the rabbit retina during postnatal development. Whole-cell patch-clamp recordings were made from 110 displaced starburst cells in a thin retina] slice preparation of rabbits between postnatal days P1 and P56 old. We report that displaced starburst cells undergo a dramatic transition from spiking to nonspiking, caused by a loss of voltage-gated Na currents. This change in membrane excitability occurred just after eye opening (P10), such that all of the starburst cells tested before eye opening had conspicuous tetrodotoxin-sensitive Na currents and action potentials, but none tested after the first 3 postnatal weeks had detectable Na currents or spikes. Our results suggest that starburst cells use action potentials transiently during development and probably play a functional role in visual development. These cells then cease to spike as the retina matures, presumably consistent with their role in visual processing in the mature retina.
Resumo:
Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines.
Resumo:
The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same.
Resumo:
Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars.
Resumo:
We present a few results of a work in progress tackling the radial spectroscopic properties of bulges of spiral galaxies.
Resumo:
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV – the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
Resumo:
We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (≳10^11 M_⊙) gas-rich spirals NGC 4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties, and stellar population diagnostics, over the full optical extent of both galaxies with ~1.6 kpc spatial resolution. The Mice galaxies provide a perfect case study that highlights the importance of IFS data for improving our understanding of local galaxies. The impact of first passage on the kinematics of the stars and gas has been significant, with strong bars most likely induced in both galaxies. The barred spiral NGC 4676B exhibits a strong twist in both its stellar and ionised gas disk. The edge-on disk galaxy NGC 4676A appears to be bulge free, with a strong bar causing its “boxy” light profile. On the other hand, the impact of the merger on the stellar populations has been minimal thus far. By combining the IFS data with archival multiwavelength observations we show that star formation induced by the recent close passage has not contributed significantly to the total star formation rate or stellar mass of the galaxies. Both galaxies show bicones of high ionisation gas extending along their minor axes. In NGC 4676A the high gas velocity dispersion and Seyfert-like line ratios at large scaleheight indicate a powerful outflow. Fast shocks (vs ~ 350 km s^-1) extend to ~6.6 kpc above the disk plane. The measured ram pressure (P/k = 4.8 × 10^6 K cm^-3) and mass outflow rate (~8−20 M_⊙ yr^-1) are similar to superwinds from local ultra-luminous infrared galaxies, although NGC 4676A only has a moderate infrared luminosity of 3 × 10^10 L_⊙. Energy beyond what is provided by the mechanical energy of the starburst appears to be required to drive the outflow. Finally, we compare the observations to mock kinematic and stellar population maps extracted from a hydrodynamical merger simulation. The models show little enhancement in star formation during and following first passage, in agreement with the observations. We highlight areas where IFS data could help further constrain the models.