972 resultados para gait kinematic parameters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The paper aims to define the parameters available before surgery which could predict immediate facial nerve function after excision of a vestibular schwannoma (VS). METHODS: Ninety-nine patients with VS operated consecutively by a single surgeon using an identical surgical technique have been evaluated retrospectively. Data were collected regarding patients' sex, age at onset of symptoms and at surgery, initial symptoms, neurological status at presentation, early post-operative neurological status and complications. The main radiological parameters included in the study were tumour extension pattern, diameters, shape, and volume, as well as extent of bony changes of the internal auditory canal. RESULTS: As the tumour stage and volume increase, facial nerve function is worse after surgery (p < 0.001 and p < 0.05, respectively). Concomitantly, larger extra-meatal tumour diameters in three dimensions (sagittal, coronal and axial) led to worse function (p < 0.01). Anterior and/or caudal tumour extension (p = 0.001 and p = 0.004, respectively) had more significant correlation than posterior and/or cranial extension (p = 0.022 and p = 0.353, respectively). Polycyclic VS had the worst prognosis, followed by the tumours with oval shape. The extent of intra-meatal tumour growth does not correlate with immediate facial nerve outcome. The different angles, lengths and diameters of the internal auditory channel showed no significant correlation with facial nerve outcome. Patients with headache as an initial symptom and those with gait instability and/or pre-operative poor facial nerve function had significantly worse immediate facial nerve outcome. CONCLUSION: Our data suggests that the analysis of the radiological and neurological patient data prior to surgery could give reliable clues regarding the immediate post-operative facial nerve function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Joint hypermobility is known to be associated with joint and muscle pain, joint instability and osteoarthritis. Previous work suggested that those individuals present an altered neuromuscular behavior during activities such as level walking. Therefore, the aim of this study was to explore the differences in ground reaction forces, temporal parameters and muscle activation patterns during gait between normomobile and hypermobile women, including symptomatic and asymptomatic hypermobile individuals. METHODS A total of 195 women were included in this cross-sectional study, including 67 normomobile (mean 24.8 [SD 5.4] years) and 128 hypermobile (mean 25.8 [SD 5.4] years), of which 56 were further classified as symptomatic and 47 as asymptomatic. The remaining 25 subjects could not be further classified. Ground reaction forces and muscle activation from six leg muscles were measured while the subjects walked at a self-selected speed on an instrumented walkway. Temporal parameters were derived from ground reaction forces and a foot accelerometer. The normomobile and hypermobile groups were compared using independent samples t-tests, whereas the normomobile, symptomatic and asymptomatic hypermobile groups were compared using one-way ANOVAs with Tukey post-hoc tests (significance level=0.05). FINDINGS Swing phase duration was higher among hypermobile (P=0.005) and symptomatic hypermobile (P=0.018) compared to normomobile women. The vastus medialis (P=0.049) and lateralis (P=0.030) and medial gastrocnemius (P=0.011) muscles showed higher mean activation levels during stance in the hypermobile compared to the normomobile group. INTERPRETATION Hypermobile women might alter their gait pattern in order to stabilize their knee joint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical properties of human trabecular bone play an important role in age-related bone fragility and implant stability. Micro-finite element (microFE) analysis allows computing the apparent elastic properties of trabecular bone biopsies, but the results depend on the type of applied boundary conditions (BCs). In this study, 167 femoral trabecular cubic biopsies with a side length of 5.3 mm were analyzed using microFE analysis to compare their stiffness systematically with kinematic uniform boundary conditions (KUBCs) and periodicity-compatible mixed uniform boundary conditions (PMUBCs). The obtained elastic constants were then used in the volume fraction and fabric-based orthotropic Zysset-Curnier model to identify their respective model parameters. As expected, PMUBCs lead to more compliant apparent elastic properties than KUBCs, especially in shear. The differences in stiffness decreased with bone volume fraction and mean intercept length. Unlike KUBCs, PMUBCs were sensitive to heterogeneity of the biopsies. The Zysset-Curnier model predicted apparent elastic constants successfully in both cases with adjusted coefficients of determination of 0.986 for KUBCs and 0.975 for PMUBCs. The role of these boundary conditions in finite element analyses of whole bones and bone-implant systems will need to be investigated in future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. The positions of the end effector are related to incremental positions of resolvers of the motors of the robot, and a kinematic model of the robot is used to find a new group of parameters which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and improving spatial measurements. Finally, the robotic system is designed to carry out tracking tasks and the calibration of the robot is validated by means of integrating the errors of the visual controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the driving cycles of a fleet of vehicles with predetermined urban itineraries. Most driving cycles developed for such type of vehicles do not properly address variability among itineraries. Here we develop a polygonal driving cycle that assesses each group of related routes, based on microscopic parameters. It measures the kinematic cycles of the routes traveled by the vehicle fleet, segments cycles into micro-cycles, and characterizes their properties, groups them into clusters with homogeneous kinematic characteristics within their specific micro-cycles, and constructs a standard cycle for each cluster. The process is used to study public bus operations in Madrid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women’s internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomechanical adaptations that occur during pregnancy can lead to changes on gait pattern. Nevertheless, these adaptations of gait are still not fully understood. The purpose was to determine the effect of pregnancy on the biomechanical pattern of walking, regarding the kinetic parameters. A three-dimensional analysis was performed in eleven participants. The kinetic parameters in the joints of the lower limb during gait were compared at the end of the first, second, and third trimesters of pregnancy and in the postpartum period, in healthy pregnant women. The main results showed a reduction in the normalized vertical reaction forces, throughout pregnancy, particularly the third peak. Pregnant women showed, during most of the stance phase, medial reaction forces as a motor response to promote the body stability. Bilateral changes were observed in hip joint, with a decrease in the participation of the hip extensors and in the eccentric contraction of hip flexors. In ankle joint a decrease in the participation of ankle plantar flexors was found. In conclusion, the overall results point to biomechanical adjustments that showed a decrease of the mechanical load of women throughout pregnancy, with exception for few unilateral changes of hip joint moments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women’s internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Control of the trunk is critical for locomotor efficiency. However, investigations of trunk muscle activity and three-dimensional lumbo-pelvic kinematics during walking and running remain scarce. Methods. Gait parameters and three-dimensional lumbo-pelvic kinematics were recorded in seven subjects. Electromyography recordings of abdominal and paraspinal muscles were made using fine-wire and surface electrodes as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Findings. Kinematic data indicate that the amplitude but not timing of lumbo-pelvic motion changes with locomotor speed. Conversely, a change in locomotor mode is associated with temporal but not spatial adaptation in neuromotor strategy. That is, peak transverse plane lumbo-pelvic rotation occurs at foot strike during walking but prior to foot strike during running. Despite this temporal change, there is a strong correlation between the amplitude of transverse plane lumbo-pelvic rotation and stride length during walking and running. In addition, Jumbo-pelvic motion was asymmetrical during all locomotor tasks. Trunk muscle electromyography occurred biphasically in association with foot strike. Transversus abdominis was tonically active with biphasic modulation. Consistent with the kinematic data, electromyography activity of the abdominal muscles and the superficial fibres of multifidus increased with locomotor speed, and timing of peak activity of superficial multifidus and obliquus externus abdominis was modified in association with the temporal adaptation in lumbo-pelvic motion with changes in locomotor mode. Interpretation. These data provide evidence of the association between lumbo-pelvic motion and trunk muscle activity during locomotion at different speeds and modes. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62P10, 92C20

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ackground Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.