954 resultados para functional complementation of yeast mutant
Resumo:
This thesis is centered on applying molecular genetics to study pattern formation during animal development. More specifically, this thesis describes the functional studies of a LIM-homeodomain gene called lmx1b during murine embryogenesis. Lmx1b expression is restricted to the mid-hindbrain junction as well as to the dorsal mesenchyme of the limb, suggesting important functions during mid-hindbrain and limb development. To test these possibilities, lmx1b homozygous mutant mice were generated and their limb and CNS phenotypes examined. Lmx1b homozygous mutant mice exhibit a large reduction of mid-hindbrain structures, and that their limbs are symmetrical along the dorsal-ventral axis as the result of a dorsal to ventral transformation. Taken together, these studies define essential functions for lmx1b in mid-hindbrain patteming and in dorsal limb cell fate determination. However, the molecular mechanisms which accounts for these phenotypes are unknown, and whether lmx1b has same or distinctive functions during the mid-hindbrain and limb development is also unclear. ^ Recently, insight into molecular mechanisms of mid-hindbrain patterning and limb development has resulted from the identification of several factors with restricted expression patterns within these regions. These include the secreted factors wnt-1, fgf-8, wnt-7a and the transcription factors pax-2, and en-1. Targeted disruption of any of these genes in mice suggests that these genes might be involved in similar regulatory pathways. Analysis of the expression of these genes in lmx1b mutants demonstrates that lmxlb is not required for the initiation, but is required to maintain their expression at the mid-hindbrain junction. Thus, lmxlb is not required for specifying mid-hindbrain cell fates, rather, it functions to ensure the establishment or maintenance of a proper organizing center at the mid-hindbrain junction. Interestingly, lmxlb functions cell non-autonomously in chimera analysis, which indicates that lmx1b might regulate the expression of secreted factors such as wnt-1 and/or fgf-8 in the organizing center. In contrast, lmx1b functions cell autonomously in the dorsal limb to govern dorsal ventral limb development and its expression is regulated by with wnt-7a and en-1. However, single and double mutant analysis suggest that all three genes have partially overlapping functions as well as independent functions. The results point toward a complicated network of cross-talks among all three limb axes. ^
Resumo:
Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^
Resumo:
Normal development and tissue homeostasis requires the carefully orchestrated balance between cell proliferation and cell death. Cell cycle checkpoints control the extent of cell proliferation. Cell death is coordinated through the activation of a cell suicide pathway that results in the morphologically recognizable form of death, apoptosis. Tumorigenesis requires that the balance between these two pathways be disrupted. The tumor suppressor protein Rb has not only been shown to be involved in the enforcement of cell cycle checkpoints, but has also been implicated in playing a role in the regulation of apoptosis. The manner in which Rb enforces cell cycle checkpoints has been well studied; however, its involvement in the regulation of apoptosis is still very unclear. p84N5 is a novel nuclear death domain containing protein that has been shown to interact with the N-terminus of Rb. The fact that it contains a death domain and the fact that it is nuclear localized possibly provides the first known mechanism for apoptotic signaling from the nucleus. The following study tested the hypothesis that the novel exclusively nuclear death domain containing protein p84N5 is an important mediator of programmed cell death and that its apoptotic function is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. We identified the p84N5 nuclear localization signal (NLS), eliminated it, and tested the functional significance of nuclear localization by using wild type and mutant sequences fused to EGFP-C1 (Clontech) to create wild type GFPN5 and subsequent mutants. The results of these assays demonstrated exclusive nuclear localization of GFPN5 is required for normal p84N5 induced apoptosis. We further conducted large-scale mutagenesis of the GFPN5 construct to identify a minimal region within p84N5 capable of interacting with Rb. We were able to identify a minimal sequence containing p84N5 amino acids 318 to 464 that was capable of interacting with Rb in co-immunoprecipitation assays. We continued by conducting a structural and functional analysis to identify the region or regions within p84N5 responsible for inducing apoptosis. Point mutations and small-scale deletions within the death domain of p84N5 lessened the effect but did not eliminate p84N5-induced cytotoxicity. Further analysis revealed that the minimal sequence of 318 to 464 of p84N5 was capable of inducing apoptosis to a similar degree as wild-type GFPN5 protein. Since amino acids 318 to 464 of p84N5 are capable of inducing apoptosis and interacting with Rb, we propose possible mechanisms whereby p84N5 may function in a Rb regulated manner. These results demonstrate that p84N5 induced apoptosis is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. ^
Resumo:
El tomate (Solanum lycopersicum L.) es considerado uno de los cultivos hortícolas de mayor importancia económica en el territorio Español. Sin embargo, su producción está seriamente afectada por condiciones ambientales adversas como, salinidad, sequía y temperaturas extremas. Para resolver los problemas que se presentan en condiciones de estrés, se han empleado una serie de técnicas culturales que disminuyen sus efectos negativos, siendo de gran interés el desarrollo de variedades tolerantes. En este sentido la obtención y análisis de plantas transgénicas, ha supuesto un avance tecnológico, que ha facilitado el estudio y la evaluación de genes seleccionados en relación con la tolerancia al estrés. Estudios recientes han mostrado que el uso de genes reguladores como factores de transcripción (FTs) es una gran herramienta para obtener nuevas variedades de tomate con mayor tolerancia a estreses abióticos. Las proteínas DOF (DNA binding with One Finger) son una familia de FTs específica de plantas (Yangisawa, 2002), que están involucrados en procesos fisiológicos exclusivos de plantas como: asimilación del nitrógeno y fijación del carbono fotosintético, germinación de semilla, metabolismo secundario y respuesta al fotoperiodo pero su preciso rol en la tolerancia a estrés abiótico se desconoce en gran parte. El trabajo descrito en esta tesis tiene como objetivo estudiar genes reguladores tipo DOF para incrementar la tolerancia a estrés abiotico tanto en especies modelo como en tomate. En el primer capítulo de esta tesis se muestra la caracterización funcional del gen CDF3 de Arabidopsis, así como su papel en la respuesta a estrés abiótico y otros procesos del desarrollo. La expresión del gen AtCDF3 es altamente inducido por sequía, temperaturas extremas, salinidad y tratamientos con ácido abscísico (ABA). La línea de inserción T-DNA cdf3-1 es más sensible al estrés por sequía y bajas temperaturas, mientras que líneas transgénicas de Arabidopsis 35S::AtCDF3 aumentan la tolerancia al estrés por sequía, osmótico y bajas temperaturas en comparación con plantas wild-type (WT). Además, estas plantas presentan un incremento en la tasa fotosintética y apertura estomática. El gen AtCDF3 se localiza en el núcleo y que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional en ensayos de protoplastos de Arabidopsis. El dominio C-terminal de AtCDF3 es esencial para esta localización y su capacidad activación, la delección de este dominio reduce la tolerancia a sequía en plantas transgénicas 35S::AtCDF3. Análisis por microarray revelan que el AtCDF3 regula un set de genes involucrados en el metabolismo del carbono y nitrógeno. Nuestros resultados demuestran que el gen AtCDF3 juega un doble papel en la regulación de la respuesta a estrés por sequía y bajas temperaturas y en el control del tiempo de floración. En el segundo capítulo de este trabajo se lleva a cabo la identificación de 34 genes Dof en tomate que se pueden clasificar en base a homología de secuencia en cuatro grupos A-D, similares a los descritos en Arabidopsis. Dentro del grupo D se han identificado cinco genes DOF que presentan características similares a los Cycling Dof Factors (CDFs) de Arabidopsis. Estos genes son considerados ortólogos de Arabidopsis CDF1-5, y han sido nombrados como Solanum lycopersicum CDFs o SlCDFs. Los SlCDF1-5 son proteínas nucleares que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional in vivo. Análisis de expresión de los genes SlCDF1-5 muestran diferentes patrones de expresión durante el día y son inducidos de forma diferente en respuesta a estrés osmótico, salino, y de altas y bajas temperaturas. Plantas de Arabidopsis que sobre-expresan SlCDF1 y SlCDF3 muestran un incremento de la tolerancia a la sequía y salinidad. Además, de la expresión de varios genes de respuesta estrés como AtCOR15, AtRD29A y AtERD10, son expresados de forma diferente en estas líneas. La sobre-expresión de SlCDF3 en Arabidopsis promueve un retardo en el tiempo de floración a través de la modulación de la expresión de genes que controlan la floración como CONSTANS (CO) y FLOWERING LOCUS T (FT). En general, nuestros datos demuestran que los SlCDFs están asociados a funciones aun no descritas, relacionadas con la tolerancia a estrés abiótico y el control del tiempo de floración a través de la regulación de genes específicos y a un aumento de metabolitos particulares. ABSTRACT Tomato (Solanum lycopersicum L.) is one of the horticultural crops of major economic importance in the Spanish territory. However, its production is being affected by adverse environmental conditions such as salinity, drought and extreme temperatures. To resolve the problems triggered by stress conditions, a number of agricultural techniques that reduce the negative effects of stress are being frequently applied. However, the development of stress tolerant varieties is of a great interest. In this direction, the technological progress in obtaining and analysis of transgenic plants facilitated the study and evaluation of selected genes in relation to stress tolerance. Recent studies have shown that a use of regulatory genes such as transcription factors (TFs) is a great tool to obtain new tomato varieties with greater tolerance to abiotic stresses. The DOF (DNA binding with One Finger) proteins form a family of plant-specific TFs (Yangisawa, 2002) that are involved in the regulation of particular plant processes such as nitrogen assimilation, photosynthetic carbon fixation, seed germination, secondary metabolism and flowering time bur their precise roles in abiotic stress tolerance are largely unknown. The work described in this thesis aims at the study of the DOF type regulatory genes to increase tolerance to abiotic stress in both model species and the tomato. In the first chapter of this thesis, we present molecular characterization of the Arabidopsis CDF3 gene as well as its role in the response to abiotic stress and in other developmental processes. AtCDF3 is highly induced by drought, extreme temperatures, salt and abscisic acid (ABA) treatments. The cdf3-1 T-DNA insertion mutant was more sensitive to drought and low temperature stresses, whereas the AtCDF3 overexpression enhanced the tolerance of transgenic plants to drought, cold and osmotic stress comparing to the wild-type (WT) plants. In addition, these plants exhibit increased photosynthesis rates and stomatal aperture. AtCDF3 is localized in the nuclear region, displays specific binding to the canonical DNA target sequences and has a transcriptional activation activity in Arabidopsis protoplast assays. In addition, the C-terminal domain of AtCDF3 is essential for its localization and activation capabilities and the deletion of this domain significantly reduces the tolerance to drought in transgenic 35S::AtCDF3 overexpressing plants. Microarray analysis revealed that AtCDF3 regulated a set of genes involved in nitrogen and carbon metabolism. Our results demonstrate that AtCDF3 plays dual roles in regulating plant responses to drought and low temperature stress and in control of flowering time in vegetative tissues. In the second chapter this work, we carried out to identification of 34 tomato DOF genes that were classified by sequence similarity into four groups A-D, similar to the situation in Arabidopsis. In the D group we have identified five DOF genes that show similar characteristics to the Cycling Dof Factors (CDFs) of Arabidopsis. These genes were considered orthologous to the Arabidopsis CDF1 - 5 and were named Solanum lycopersicum CDFs or SlCDFs. SlCDF1-5 are nuclear proteins that display specific binding to canonical DNA target sequences and have transcriptional activation capacities in vivo. Expression analysis of SlCDF1-5 genes showed distinct diurnal expression patterns and were differentially induced in response to osmotic, salt and low and high temperature stresses. Arabidopsis plants overexpressing SlCDF1 and SlCDF3 showed increased drought and salt tolerance. In addition, various stress-responsive genes, such as AtCOR15, AtRD29A and AtERD10, were expressed differently in these lines. The overexpression of SlCDF3 in Arabidopsis also results in the late flowering phenotype through the modulation of the expression of flowering control genes such CONSTANS (CO) and FLOWERING LOCUS T (FT). Overall, our data connet SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Resumo:
Las cascadas de señalización mediadas por proteína quinasas activadas por mitógeno (MAP quinasas) son capaces de integrar y transducir señales ambientales en respuestas celulares. Entre estas señales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son moléculas de patógenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son moléculas derivadas de las plantas producidas en respuesta a daño celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterización funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que actúa como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulación del patrón estomático, la elongación del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomórfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patógenos biótrofos y necrótrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una deleción en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patógenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulación de la resistencia de las plantas a patógenos. Nuestros datos indican que esta función es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que están implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrótrofo Plectosphaerella cucumerina y el patrón estomático mediante su interacción genética con la RLK ERECTA (ER), un PRR implicado en la regulación de estos procesos. Por el contrario, la interacción genética entre ER y YDA en la regulación de otros procesos de desarrollo es aditiva en lugar de epistática. Análisis genéticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomático, es un componente de la ruta de señalización mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el módulo de transducción de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de señalización reguladas por las hormonas de defensa ácido salicílico, ácido jasmónico, ácido abscísico o etileno, y también es independiente de la ruta de metabolitos secundarios derivados del triptófano, que están implicados en inmunidad vegetal. Además, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentración de calcio citoplásmico, la producción de especies reactivas de oxígeno, la fosforilación de MAP quinasas y la expresión de genes de defensa, no están afectadas en el mutante yda11. La expresión constitutiva de la proteína CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En línea con estos resultados, nuestros datos transcriptómicos revelan una sobre-representación en plantas CA-YDA de genes de defensa que codifican, por ejemplo, péptidos antimicrobianos o reguladores de muerte celular, o proteínas implicadas en la biogénesis de la pared celular, lo que sugiere una conexión potencial entre la composición e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Además, análisis de fosfoproteómica indican la fosforilación diferencial de proteínas relacionadas con la pared celular en plantas CA-YDA en comparación con plantas silvestres. El posible papel de la ruta ER-YDA en la regulación de la integridad de la pared celular está apoyado por análisis bioquímicos y glicómicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composición de la pared celular de estos genotipos en comparación con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patógenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.
Resumo:
Unique, small sequences (sequence tag sites) have been identified at the 3′ ends of most human genes that serve as landmarks in genome mapping. We investigated whether a single copy gene could be isolated directly from total human DNA by transformation-associated recombination (TAR) cloning in yeast using a short, 3′ unique target. A TAR cloning vector was constructed that, when linearized, contained a small amount (381 bp) of 3′ hypoxanthine phosphoribosyltransferase (HPRT) sequence at one end and an 189-bp Alu repeat at the other end. Transformation with this vector along with human DNA led to selective isolations of the entire HPRT gene as yeast artificial chromosomes (YACs) that extended from the 3′ end sequence to various Alu positions as much as 600 kb upstream. These YACs were retrofitted with a NeoR and a bacterial artificial chromosome (BAC) sequence to transfer the YACs to bacteria and subsequently the BACs to mouse cells by using a Neo selection. Most of the HPRT isolates were functional, demonstrating that TAR cloning retains the functional integrity of the isolated material. Thus, this modified version of TAR cloning, which we refer to as radial TAR cloning, can be used to isolate large segments of the human genome accurately and directly with only a small amount of sequence information.
Resumo:
Norepinephrine contributes to antinociceptive, sedative, and sympatholytic responses in vivo, and α2 adrenergic receptor (α2AR) agonists are used clinically to mimic these effects. Lack of subtype-specific agonists has prevented elucidation of the role that each α2AR subtype (α2A, α2B, and α2C) plays in these central effects. Here we demonstrate that α2AR agonist-elicited sedative, anesthetic-sparing, and analgesic responses are lost in a mouse line expressing a subtly mutated α2AAR, D79N α2AAR, created by two-step homologous recombination. These functional changes are accompanied by failure of the D79N α2AAR to inhibit voltage-gated Ca2+ currents and spontaneous neuronal firing, a measure of K+ current activation. These results provide definitive evidence that the α2AAR subtype is the primary mediator of clinically important central actions of α2AR agonists and suggest that the D79N α2AAR mouse may serve as a model for exploring other possible α2AAR functions in vivo.
Resumo:
The small subunit of calpain, a calcium-dependent cysteine protease, was found to interact with the cytoplasmic domain of the common cytokine receptor γ chain (γc) in a yeast two-hybrid interaction trap assay. This interaction was functional as demonstrated by the ability of calpain to cleave in vitro-translated wild-type γc, but not γc containing a mutation in the PEST (proline, glutamate, serine, and threonine) sequence in its cytoplasmic domain, as well as by the ability of endogenous calpain to mediate cleavage of γc in a calcium-dependent fashion. In T cell receptor-stimulated murine thymocytes, calpain inhibitors decreased cleavage of γc. Moreover, in single positive CD4+ thymocytes, not only did a calpain inhibitor augment CD3-induced proliferation, but antibodies to γc blocked this effect. Finally, treatment of cells with ionomycin could inhibit interleukin 2-induced STAT protein activation, but this inhibition could be reversed by calpain inhibitors. Together, these data suggest that calpain-mediated cleavage of γc represents a mechanism by which γc-dependent signaling can be controlled.
Resumo:
Connector enhancer of KSR (CNK) is a multidomain protein required for RAS signaling. Its C-terminal portion (CNKC-term) directly binds to RAF. Herein, we show that the N-terminal portion of CNK (CNKN-term) strongly cooperates with RAS, whereas CNKC-term efficiently blocks RAS- and RAF-dependent signaling when overexpressed in the Drosophila eye. Two effector loop mutants of RASV12, S35 and C40, which selectively activate the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase pathways, respectively, do not cooperate with CNK. However, a strong cooperation is observed between CNK and RASV12G37, an effector loop mutant known in mammals to activate specifically the RAL pathway. We have identified two domains in CNKN-term that are critical for cooperation with RAS. Our results suggest that CNK functions in more than one pathway downstream of RAS. CNKc-term seems to regulate RAF, a component of the MAPK pathway, whereas CNKN-term seems to be involved in a MAPK-independent pathway.
Resumo:
The lipid bilayer of the myelin membrane of the central nervous system (CNS) and the peripheral nervous system (PNS) contains the oligodendrocyte- and Schwann cell-specific glycosphingolipids galactocerebrosides (GalC) and GalC-derived sulfatides (sGalC). We have generated a UDP-galactose ceramide galactosyltransferase (CGT) null mutant mouse (cgt−/−) with CNS and PNS myelin completely depleted of GalC and derived sGalC. Oligodendrocytes and Schwann cells are unable to restore the structure and function of these galactosphingolipids to maintain the insulator function of the membrane bilayer. The velocity of nerve conduction of homozygous cgt−/− mice is reduced to that of unmyelinated axons. This indicates a severely altered ion permeability of the lipid bilayer. GalC and sGalC are essential for the unperturbed lipid bilayer of the myelin membrane of CNS and PNS. The severe dysmyelinosis leads to death of the cgt−/− mouse at the end of the myelination period.
Resumo:
Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the β-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 2842–2848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and ΔGlu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.
Resumo:
Ebola virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Studies of this virus have been hampered by its extraordinary pathogenicity, which requires biosafety level 4 containment. To circumvent this problem, we developed a novel complementation system for functional analysis of Ebola virus glycoproteins. It relies on a recombinant vesicular stomatitis virus (VSV) that contains the green fluorescent protein gene instead of the receptor-binding G protein gene (VSVΔG*). Herein we show that Ebola Reston virus glycoprotein (ResGP) is efficiently incorporated into VSV particles. This recombinant VSV with integrated ResGP (VSVΔG*-ResGP) infected primate cells more efficiently than any of the other mammalian or avian cells examined, in a manner consistent with the host range tropism of Ebola virus, whereas VSVΔG* complemented with VSV G protein (VSVΔG*-G) efficiently infected the majority of the cells tested. We also tested the utility of this system for investigating the cellular receptors for Ebola virus. Chemical modification of cells to alter their surface proteins markedly reduced their susceptibility to VSVΔG*-ResGP but not to VSVΔG*-G. These findings suggest that cell surface glycoproteins with N-linked oligosaccharide chains contribute to the entry of Ebola viruses, presumably acting as a specific receptor and/or cofactor for virus entry. Thus, our VSV system should be useful for investigating the functions of glycoproteins from highly pathogenic viruses or those incapable of being cultured in vitro.
Resumo:
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.
Resumo:
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Δ, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4–64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4–64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.
Resumo:
We have addressed the mechanisms governing the activation and trafficking of G protein-coupled receptors (GPCRs) by analyzing constitutively active mating pheromone receptors (Ste2p and Ste3p) of the yeast Saccharomyces cerevisiae. Substitution of the highly conserved proline residue in transmembrane segment VI of these receptors causes constitutive signaling. This proline residue may facilitate folding of GPCRs into native, inactive conformations, and/or mediate agonist-induced structural changes leading to G protein activation. Constitutive signaling by mutant receptors is suppressed upon coexpression with wild-type, but not G protein coupling-defective, receptors. Wild-type receptors may therefore sequester a limiting pool of G proteins; this apparent “precoupling” of receptors and G proteins could facilitate signal production at sites where cell surface projections form during mating partner discrimination. Finally, rather than being expressed mainly at the cell surface, constitutively active pheromone receptors accumulate in post-endoplasmic reticulum compartments. This is in contrast to other defective membrane proteins, which apparently are targeted by default to the vacuole. We suggest that the quality-control mechanism that retains receptors in post-endoplasmic reticulum compartments may normally allow wild-type receptors to fold into their native, fully inactive conformations before reaching the cell surface. This may ensure that receptors do not trigger a response in the absence of agonist.