874 resultados para fractures fixation
Resumo:
Virtual methods to assess the fitting of a fracture fixation plate were proposed recently, however with limitations such as simplified fit criteria or manual data processing. This study aims to automate a fit analysis procedure using clinical-based criteria, and then to analyse the results further for borderline fit cases. Three dimensional (3D) models of 45 bones and of a precontoured distal tibial plate were utilized to assess the fitting of the plate automatically. A Matlab program was developed to automatically measure the shortest distance between the bone and the plate at three regions of interest and a plate-bone angle. The measured values including the fit assessment results were recorded in a spreadsheet as part of the batch-process routine. An automated fit analysis procedure will enable the processing of larger bone datasets in a significantly shorter time, which will provide more representative data of the target population for plate shape design and validation. As a result, better fitting plates can be manufactured and made available to surgeons, thereby reducing the risk and cost associated with complications or corrective procedures. This in turn, is expected to translate into improving patients' quality of life.
Resumo:
The aim of this study was to develop a reliable technique for measuring the area of a curved surface from an axial computed tomography (CT) scan and to apply this clinically in the measurement of articular cartilage surface area in acetabular fractures. The method used was a triangulation algorithm. In order to determine the accuracy of the technique, areas of hemispheres of known size were measured to give the percentage error in area measurement. Seven such hemispheres were machined into a Perspex block and their area measured geometrically, and also from CT scans by means of the triangulation algorithm. Scans of 1, 2 and 4 mm slice thickness and separation were used. The error varied with slice thickness and hemisphere diameter. It was shown that the 2 mm slice thickness provides the most accurate area measurement, while 1 mm cuts overestimate and 4 mm cuts underestimate the area. For a hemisphere diameter of 5 cm, which is of similar size to the acetabulum, the error was -11.2% for 4 mm cuts, +4.2% for 2 mm cuts and + 5.1% for 1 mm cuts. As expected, area measurement was more accurate for larger hemispheres. This method can be applied clinically to quantify acetabular fractures by measuring the percentage area of intact articular cartilage. In the case of both column fractures, the percentage area of secondary congruence can be determined. This technique of quantifying acetabular fractures has a potential clinical application as a prognostic factor and an indication for surgery in the long term.
Resumo:
Compound pelvic fractures are deemed to be one of the most severe orthopaedic injuries with an extremely high morbidity and mortality. After the initial resuscitation phase the prevention of pelvic sepsis is one of the main treatment goals for patients with an open pelvic fracture. If there is a suspicion of a rectal injury or if the wounds are in the perineal area, The Princess Alexandra Hospital's management plan includes early faecal diversion combined with vigorous soft tissue debridement, VAC(®) therapy and (if indicated) external fixation of the pelvic fracture. We present our flowchart for the treatment of trauma patients with compound pelvic fractures illustrated by a case report describing a 32 year old patient who sustained an open pelvic ring injury in a workplace accident. The aim of this paper is to underline the importance of a safe, straightforward approach to compound pelvic fractures.
Resumo:
Background Although the non-operative management of closed humeral midshaft fractures has been advocated for years, the increasing popularity of operative intervention has left the optimal treatment choice unclear. Objective To compare the outcomes of operative and non-operative treatment of traumatic closed humeral midshaft fractures in adult patients. Methods A multicentre prospective comparative cohort study across 20 centres was conducted. Patients with AO type 12 A2, A3 and B2 fractures were treated with a functional brace or a retrograde-inserted unreamed humeral nail. Follow-up measurements were taken at 6, 12 and 52 weeks after the injury. The primary outcome was fracture healing after 1 year. Secondary outcomes included sub-items of the Constant score, general patient satisfaction, complications and cost-effectiveness parameters. Functions of the uninjured extremity were used as reference parameters. Intention-to-treat analysis was applied with the use of t-tests, Fisher’s exact tests, Mann–Whitney U-tests and adjusted analysis of variance (ANOVA). Results Forty-seven patients were included. The patient sample consisted of 23 women and 24 men, with a mean age of 52.7 years (range 17–86 years). Of the 47 cases, 14 were treated non-operatively and 33 operatively. The follow-up rate at 1 year was 81%. After 1 year, 11 fractures (100%) healed in the non-operative group and at least 24 fractures (≥89%) healed in the operative group [1 non-union patient (4%) and no data for 2 patients (7%)]. There were no significant differences in pain, range of motion (ROM) of the shoulder and elbow, and return to work after 6 weeks, 12 weeks and 1 year. Although operatively treated patients showed significantly greater shoulder abduction strength (p = 0.036), elbow flexion strength (p = 0.021), functional hand positioning (p = 0.008) and return to recreational activities (p = 0.043) after 6 weeks, no statistically significant differences existed in any outcome measure at the 1-year follow-up. Conclusions Our findings indicate that the non-operative management of humeral midshaft fractures can be expected to have similar functional outcomes and patient satisfaction at 1 year, despite an early benefit to operative treatment. If no radiological evidence of fracture healing exists in non-operatively treated patients during early follow-up, a switch to surgical treatment results in good functional outcomes and patient satisfaction. Keywords: Humeral shaft fracture, Non-operative treatment, Functional brace, Operative treatment, Unreamed humeral nail (UHN), Prospective, Cohort study
Resumo:
Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone contours, and depending on the material of the plate, different outcomes have been reported along with postoperative complications. A comparative analysis of Stainless Steel 316L and Ti-6Al-4V alloys was carried to estimate the safe bending limit for appropriate fits. The results from the ANSYS FEA simulations were validated with experiments based on ASTM F382-99. It is found that SS316L is better suited for large deformations (up to 16˚ in proximal tip and 7.5˚ in distal end) and Ti for smaller deformation contours (up to 3˚ in proximal tip and 1.8˚ in distal end). The results of this study have profound implications for the choice of plates based on preliminary radiographical fracture examinations to ensure better fixation and higher rates of union of distal tibial fractures.
Resumo:
INTRODUCTION: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws. MATERIALS AND METHODS: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments. RESULTS: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate. CONCLUSION: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.
Resumo:
Background: Ankle fractures are one of the more commonly occurring forms of trauma managed by orthopaedic teams worldwide. The impacts of these injuries are not restricted to pain and disability caused at the time of the incident, but may also result in long term physical, psychological, and social consequences. There are currently no ankle fracture specific patient-reported outcome measures with a robust content foundation. This investigation aimed to develop a thematic conceptual framework of life impacts following ankle fracture from the experiences of people who have suffered ankle fractures as well as the health professionals who treat them. Methods: A qualitative investigation was undertaken using in-depth semi-structured interviews with people (n=12) who had previously sustained an ankle fracture (patients) and health professionals (n=6) that treat people with ankle fractures. Interviews were audio-recorded and transcribed. Each phrase was individually coded and grouped in categories and aligned under emerging themes by two independent researchers. Results: Saturation occurred after 10 in-depth patient interviews. Time since injury for patients ranged from 6 weeks to more than 2 years. Experience of health professionals ranged from 1 year to 16 years working with people with ankle fractures. Health professionals included an Orthopaedic surgeon (1), physiotherapists (3), a podiatrist (1) and an occupational therapist (1). The emerging framework derived from patient data included eight themes (Physical, Psychological, Daily Living, Social, Occupational and Domestic, Financial, Aesthetic and Medication Taking). Health professional responses did not reveal any additional themes, but tended to focus on physical and occupational themes. Conclusions: The nature of life impact following ankle fractures can extend beyond short term pain and discomfort into many areas of life. The findings from this research have provided an empirically derived framework from which a condition-specific patient-reported outcome measure can be developed.
Resumo:
This paper proposes a new iterative method to achieve an optimally fitting plate for preoperative planning purposes. The proposed method involves integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
The aim of this research is to report initial experimental results and evaluation of a clinician-driven automated method that can address the issue of misdiagnosis from unstructured radiology reports. Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to disperse information resources and vast amounts of manual processing of unstructured information, a point-of-care accurate diagnosis is often difficult. A rule-based method that considers the occurrence of clinician specified keywords related to radiological findings was developed to identify limb abnormalities, such as fractures. A dataset containing 99 narrative reports of radiological findings was sourced from a tertiary hospital. The rule-based method achieved an F-measure of 0.80 and an accuracy of 0.80. While our method achieves promising performance, a number of avenues for improvement were identified using advanced natural language processing (NLP) techniques.
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.