993 resultados para fracture resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delamination resistance and nanocreep properties of 2/2 twill weave carbon epoxy composites manufactured by hot press, autoclave, and QuickstepTM process are characterized and analyzed. Quickstep is a fluid filled, balanced pressure heated floating mold technology, which is recently developed in Perth, Western Australia for the manufacture of advanced composite components. Mode I and Mode II interlaminar fracture toughness tests, and nanoindentation creep tests on matrix materials show that the fast ramp rate of the Quickstep process provides mechanical properties comparable to that of autoclave at a lower cost for composite manufacturing. Low viscosity during ramping process and good fiber wetting are believed to be the reasons that this process produces composites with high delamination and creep-resistant properties. Nanocreep properties are analyzed using a Kelvin–Voigt model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

'Torayca' T800H/3900-2 is the first material qualified on Boeing Material Specification (BMS 8-276) which utilizes the thermoplastic-particulate interlayer toughening technology. Two manufacturing processes, the autoclave process and the fast heating rated Quickstep™ process, were employed to cure this material. The Quickstep process is a unique composite production technology which utilizes the fast heat transfer rate of fluid to heat and cure polymer composite components. The manufacturing influence on the mode I delamination fracture toughness of laminates was investigated by performing double cantilever beam tests. The composite specimens fabricated by two processes exhibited dissimilar delamination resistance curves (R-curves) under mode I loading. The initial value of fracture toughness GIC-INIT was 564 J/m2 for the autoclave specimens and 527 J/m2 for the Quickstep specimens. However, the average propagation fracture toughness GIC-PROP was 783 J/m2 for the Quickstep specimens, which was 2.6 times of that for the autoclave specimens. The mechanism of fracture occurred during delamination was studied under scanning electron microscope (SEM). Three types of fracture were observed: the interlayer fracture, the interface fracture, and the intralaminar fracture. These three types of fracture played different roles in affecting the delamination resistance curves during the crack growth. More fiber bridging was found in the process of delamination for the Quickstep specimens. Better fiber/matrix adhesion was found in the Quickstep specimens by conducting indentation-debond tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The salt attack of Fired Clay Bricks (FCBs) causes surface damage that is aesthetically displeasing and eventually leads to structural damage. Methods for determining the resistances of FCBs to salt weathering have mainly tried to simulate the process by using accelerating aging tests. Most research in this area has concentrated on the types of salt that can cause damage and the damage that occurs during accelerated aging tests. This approach has lead to the use of accelerated aging tests as standard methods for determining resistance. Recently, it has been acknowledged that are not the most reliable way to determine salt attack resistance for all FCBs in all environments. Few researchers have examined FCBs with the aim of determining which material and mechanical properties make a FCB resistant to salt attack. The aim of this study was to identify the properties that were significant to the resistance of FCBs to salt attack. In doing so, this study aids in the development of a better test method to assess the resistance of FCBs to salt attack. The current Australian Standard accelerated aging test was used to measure the resistance of eight FCBs to salt attack using sodium sulfate and sodium chloride. The results of these tests were compared to the water absorption properties and the total porosity of FCBs. An empirical relationship was developed between the twenty-four-hour water absorption value and the number of cycles to failure from sodium sulfate tests. The volume of sodium chloride solution was found to be proportional to the total porosity of FCBs in this study. A phenomenological discussion of results led to a new mechanism being presented to explain the derivation of stress during salt crystallisation of anhydrous and hydratable salts. The mechanical properties of FCBs were measured using compression tests. FCBs were analysed as cellular materials to find that the elastic modules of FCBs was equivalent for extruded FCBs that had been fired a similar temperatures and time. Two samples were found to have significantly different elastic moduli of the solid microstructure. One of these samples was a pressed brick that was stiffer due to the extra bond that is obtained during sintering a closely packed structure. The other sample was an extruded brick that had more firing temperature and time compared with the other samples in this study. A non-destructive method was used to measure the indentation hardness and indentation stress-strain properties of FCBs. The indentation hardness of FCBs was found to be proportional to the uniaxial compression strength. In addition, the indentation hardness had a better linear correlation to the total porosity of FCBs except for those samples that had different elastic moduli of the solid microstructure. Fractography of exfoliated particles during salt cycle tests and compression tests showed there was a similar pattern of fracture during each failure. The results indicate there were inherent properties of a FCB that determines the size and shape of fractured particles during salt attack. The microstructural variables that determined the fracture properties of FCBs were shown to be important variables to include in future models that attempt to estimate the resistance of FCBs to salt attack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation and fracture characteristics of a low carbon Si–Mn steel with ferrite/bainite dual–phase structure were investigated by thermo–mechanical controlled process (TMCP). The results showed that the curves of the instantaneous work–hardening factor n* value versus true strain ε are made up with three stages during uniform plastic deformation: n* value is relatively higher at stage I, decreases slowly with ε in stage II, and then decreases quickly with ε in stage III. Compared tothe equiaxed ferrite/bainite dual–phase steel, the quasi–polygonal ferrite/bainite dual–phase steel shows higher tensile strength and n*value in the low strain region. The voids or micro–cracks formed not only at ferrite–bainite interfaces but also within ferrite grains in the necked region, which can improve the property of resistance to crack propagation by reducing local stress concentration of the crack tips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their differing etiologies and consequences, it has been proposed that the term "sarcopenia" should revert to its original definition of age-related muscle mass declines, with a separate term, "dynapenia", describing muscle strength and function declines. There is increasing interest in the interactions of sarcopenia and dynapenia with obesity. Despite an apparent protective effect of obesity on fracture, increased adiposity may compromise bone health, and the presence of sarcopenia and/or dynapenia ("sarcopenic obesity" and "dynapenic obesity") may exacerbate the risk of falls and fracture in obese older adults. Weight loss interventions are likely to be beneficial for older adults with sarcopenic and dynapenic obesity but may result in further reductions in muscle and bone health. The addition of exercise including progressive resistance training and nutritional strategies, including protein and vitamin D supplementation, may optimise body composition and muscle function outcomes thereby reducing falls and fracture risk in this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue, corrosion and wear resistance are important parameters in aircraft components development as landing gear. High strength/weight ratio and effective corrosion resistance make of titanium alloys an alternative choice to replace steel and aluminum alloys. However, titanium alloys have poor tribological properties, which reduce devices performance under friction. PVD coatings tribological systems has been increased due to their attractive mechanical properties as low environmental impact, low friction coefficient, low wear rate and hardness up to 2000 HV.In this study the influence of TiN deposited by PVD on the fatigue strength of Ti-6Al-4V alloy was evaluated. Comparison of fatigue strength of coated specimens and base material shows also a decrease when parts are coated. It was observed that the influence is more significant in high cycle fatigue tests. Scanning electron microscopy technique (SEM) was used to observe crack origin sites and fracture features. (C) 2010 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate in vitro the efficacy of root reinforcements by light-cured composite resin or zirconium fiber post in simulated immature non-vital teeth. Fifty-six bovine incisors teeth were used for this study. The crown of each tooth was removed in the medium third to obtain a standard length of 30 mm. The specimens were divided into four groups (n = 14): G1) the root canals were instrumented and enlarged to simulate immature non-vital teeth and were reinforced with a light-cured composite resin using a translucent curing post (Luminex system); (G2) the specimens were instrumented, enlarged and they received root reinforcement with zirconium fiber post; G3 (positive control): they received similar treatment to the G1 and G2 groups, but did not receive root reinforcement; G4 (negative control): the roots were not weakened and did not receive reinforcement. Every tooth was submitted to compressive force using an Instron testing machine with an angle of 45&DEG; at a speed of 1 mm min(-1) until the fracture. The results showed a markedly increased resistance to fracture in the G1 and G2 (122.38 and 122.08 kgf, respectively). Among the results of G1 and G2 there was not any significant difference (P > 0.05) but they were significantly different from the control groups (P < 0.05). The conclusion is that the use of root reinforcements with zirconiun fiber post or composite resin can increase significantly the structural resistance of the weakened teeth, decreasing the risk of the fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of the cementation length of glass fiber-reinforced composite (FRC) on the fatigue resistance of bovine teeth restored with an adhesively cemented FRC. Thirty roots of single-rooted bovine teeth were allocated to 3 groups (n = 10), according to the ratio of crown length/root length (post cementation length): group 1 = 2/3, group 2 = 1/2, and group 3 = 1/1. The roots were prepared, the fiber posts (FRC Postec Plus) were cemented, and the specimens were submitted to 2 million mechanical cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture, and data were submitted to statistical analysis. All specimens were resistant to fatigue. Taking into account the methodology and results of this study, the evaluated fiber posts can be cemented based on the ratio of crown/root at 1/1. Further clinical studies must be conducted to verify this ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The objective of this study was to carry out a comparative evaluation of the mechanical resistance of 2 rigid internal fixation techniques for fractures of the mandibular condyle using miniplates.Materials and Methods: Fort), polyurethane resin replicas of human hemimandibles were used. The hemimandibles were sectioned to simulate a high subcondylar fracture and then stabilized with 2 fixing techniques using 2.0-mm system plates and screws. The fixation techniques were 2 separate 4-hole plates with 8 screws, and 2 overlaid 4-hole plates with 4 screws. Each system was submitted to load tests, with the application of the load in mediolateral and anteroposterior directions in an Instron 4411 universal assay machine (Instron, Norwood, MA).Results: Load values and peak displacement were measured. Means and standard deviations were evaluated by analysis of variance (P < .05) and Tukey tests, in which it was verified that the anteroposterior peak load value was affected by the arrangement of the plates on the models, although no differences were observed between the groups for the mediolateral peak load. The arrangement of the plates did not have any influence on peak displacement. Similarly, the final value of the mediolateral load was not affected by the arrangement of the plates on the model.Conclusion: The experimental model with 2 separate plates was statistically superior to the model with 2 overlaid plates only in relation to anteroposterior peak load. Despite showing superiority in mediolateral peak load and peak displacement, there was no statistical difference between the groups for these parameters. (C) 2009 American Association of Oral and Maxillofacial Surgeons

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 +/- 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To assess the dimensional characteristics, flexibility and torsional behaviour of nickel-titanium retreatment instruments. Methodology Using image analysis software and high-resolution digital images, the instrument length, tip angle, diameter at 3mm from the tip and the distance between the blades (pitch length) of the following eight instruments were measured (n=12 for each measurement parameter): the ProTaper Universal retreatment (PTU-R) D1, D2 and D3 instruments; the R-Endo R1, R2 and R3 retreatment instruments; and the Mtwo retreatment (Mtwo-R) sizes 25 and 15 retreatment instruments. Maximum torque and the angular deflection at fracture as well as the bending moment at 45° were measured (n=12) according to the International Standards Organisation (ISO) specification number 3630-1. Data were analysed using the analysis of variance (α=0.05). Results The length of the active part of the instruments was found to vary according to the depth of the canal into which they were designed to reach. The pitch length also increased along the active length. The PTU-R D1 and the Mtwo-R instruments had active tips. Measurements of the bending moment at 45° revealed that the Mtwo-R 15 instrument was the most flexible, whereas the PTU-R D1 was the least flexible. The maximum torque tended to increase as the instrument diameter at 3mm from the tip increased, whereas the angular deflection at fracture varied in the opposite direction. Conclusions The geometrical characteristics of the retreatment instruments and their flexibility and torsion behaviour were consistent with their intended clinical application. © 2011 International Endodontic Journal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar a resistência à fadiga cíclica de instrumentos rotatórios de níquel-titânio após simulação de uso clinico em canais curvos (curvatura de 40° e raio de 5 mm). Trinta e seis instrumentos, calibre n° 25 conicidade 0,04, foram divididos em três grupos: o Grupo A com um ciclo de uso; Grupo B, três ciclos de uso e grupo C, cinco ciclos de uso. Um cronômetro digital aferiu em segundos o tempo até a fratura do instrumento que, posteriormente, foi convertido em número de ciclos para fratura. Os dados foram analisados por ANOVA e teste de Tukey (p<0,05). O grupo que utilizou o instrumento por cinco ciclos (grupo C) atingiu significativamente menores números de ciclos antes da fratura (média = 197,5 ciclos) quando comparado com os instrumentos utilizados em um ciclo (média = 309,2) e três ciclos (média = 287,5). Os resultados mostraram que o número de uso de instrumentos RaCe para modelar canais curvos afeta negativamente a resistência à fadiga cíclica dos instrumentos após cinco usos.