154 resultados para foo
Resumo:
Aim: Polysomnography (PSG) is the current standard protocol for sleep disordered breathing (SDB) investigation in children. Presently, there are limited reliable screening tests for both central (CE) and obstructive (OE) respiratory events. This study compared three indices, derived from pulse oximetry and electrocardiogram ( ECG), with the PSG gold standard. These indices were heart rate (HR) variability, arterial blood oxygen de-saturation (SaO(2)) and pulse transit time (PTT). Methods: 15 children (12 male) from routine PSG studies were recruited (aged 3 - 14 years). The characteristics of the three indices were based on known criteria for respiratory events (RPE). Their estimation singly and in combination was evaluated with simultaneous scored PSG recordings. Results: 215 RPE and 215 tidal breathing events were analysed. For OE, the obtained sensitivity was HR (0.703), SaO(2) (0.047), PTT (0.750), considering all three indices (0) and either of the indices (0.828) while specificity was (0.891), (0.938), (0.922), (0.953) and (0.859) respectively. For CE, the sensitivity was HR (0.715), SaO(2) (0.278), PTT (0.662), considering all indices (0.040) and either of the indices (0.868) while specificity was (0.815), (0.954), (0.901), (0.960) and (0.762) accordingly. Conclusions: Preliminary findings herein suggest that the later combination of these non-invasive indices to be a promising screening method of SDB in children.
Resumo:
Since its introduction, pulse oximetry has become a conventional clinical measure. Besides being arterial blood oxygen saturation (SpO2) measure, pulse oximeters can be used for other cardiovascular measurements, like heart rate (HR) estimations, derived from its photo plethysmographic (PPG) signals. The temporal coherence of the PPG signals and thereby HR estimates are heavily dependent on its minimal phase variability. A Masimo SET Rad-9TM, Novametrix Oxypleth and a custom designed PPG system were investigated for their relative phase variation. R-R intervals from electro-cardiogram (ECG) were recorded concurrently as reference. PPG signals obtained from the 3 systems were evaluated by comparing their respective beat-to-beat (B-B) intervals with the corresponding R-R estimates during a static test. For their relative B-B comparison to the ECG, Novametrix system differed 0.680.52% (p
Resumo:
Conventional overnight polysomnography (PSG) used to determine the respiratory behaviour during sleep can be a complex and expensive procedure. Pulse transit time analysis (PTT) has shown potential to detect obstructive apnoeic and hypopnoeic events in adults. This study was undertaken to determine the potential of PTT to differentiate responses to upper airway obstruction. 103 obstructive respiratory events occurred in PSG studies performed on 11 children (10 male and 1 female, mean age 7.5years). PTT measurements were evaluated against the corresponding PSG results pre-scored by 2 blinded observers. Broadly, there were 2 types of responses. They can be either short period of rapid PTT decreases (Type 1) or prolonged but gradual PTT decreases (Type 2). Type 1 obstructive events showed a mean change of 51.77% (p
Resumo:
Pulse Transit Time (PTT) measurement has showed potential in non-invasive monitoring of changes in blood pressure. In children, the common peripheral sites used for these studies are a finger or toe. Presently, there are no known studies conducted to investigate any possible physiologic parameters affecting PTT measurement at these sites for children. In this study, PTT values of both peripheral sites were recorded from 64 children in their sitting posture. Their mean age with standard deviation (SD) was 8.2 2.6years (ranged 3 to 12years). Subjects' peripheries path length, heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP) were measured to investigate any contributions to PTT measurement. The peripheral pulse timing characteristic measured by photoplethysmography (PPG) shows a 59.5 8.5ms (or 24.8 0.4%) difference between the two peripheries (p
Resumo:
Understanding arterial distensibility has shown to be important in the pathogenesis of cardiovascular abnormalities like hypertension. It is also known that arterial pulse wave velocity (PWV) is a measure of the elasticity or stiffness of peripheral arterial blood vessels. However, it generally requires complex instrumentations to have an accurate measurement and not suited for continual monitoring. In this paper, it describes a simple and non-intrusive method to detect the cardiovascular pulse from a human wrist above the radial artery and a fingertip. The main components of this proposed method are a piezoelectric transducer and a photo-plethysmography circuitry. 5 healthy adults (4 male) with age ranging from 25 to 38 years were recruited. The timing consistency of the detected pulsations is first evaluated and compared to that obtained from a commercial electrocardiogram. Furthermore, the derived PWV is then assessed by the predicted values attained from regression equations of two previous similar studies. The results show good correlations (p < 0.05) and similarities for the former and latter respectively. The simplicity and non-invasive nature of the proposed method can be attractive for even younger or badly disturbed patients. Moreover, it can be used for prolonged monitoring for the comfort of the patients.
Resumo:
Studies have shown that an increase in arterial stiffening can indicate the presence of cardiovascular diseases like hypertension. Current gold standard in clinical practice is by measuring the blood pressure of patients using a mercury sphygmomanometer. However, the nature of this technique is not suitable for prolonged monitoring. It has been established that pulse wave velocity is a direct measure of arterial stiffening. However, its usefulness is hampered by the absence of techniques to estimate it non-invasively. Pulse transit time (PTT) is a simple and non-intrusive method derived from pulse wave velocity. It has shown its capability in childhood respiratory sleep studies. Recently, regression equations that can predict PTT values for healthy Caucasian children were formulated. However, its usefulness to identify hypertensive children based on mean PTT values has not been investigated. This was a continual study where 3 more Caucasian male children with known clinical hypertension were recruited. Results indicated that the PTT predictive equations are able to identify hypertensive children from their normal counterparts in a significant manner (p < 0.05). Hence, PTT can be a useful diagnostic tool in identifying hypertension in children and shows potential to be a non-invasive continual monitor for arterial stiffening.