982 resultados para fishing industry
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Two types of mesoscale wind-speed jet and their effects on boundary-layer structure were studied. The first is a coastal jet off the northern California coast, and the second is a katabatic jet over Vatnajökull, Iceland. Coastal regions are highly populated, and studies of coastal meteorology are of general interest for environmental protection, fishing industry, and for air and sea transportation. Not so many people live in direct contact with glaciers but properties of katabatic flows are important for understanding glacier response to climatic changes. Hence, the two jets can potentially influence a vast number of people. Flow response to terrain forcing, transient behavior in time and space, and adherence to simplified theoretical models were examined. The turbulence structure in these stably stratified boundary layers was also investigated. Numerical modeling is the main tool in this thesis; observations are used primarily to ensure a realistic model behavior. Simple shallow-water theory provides a useful framework for analyzing high-velocity flows along mountainous coastlines, but for an unexpected reason. Waves are trapped in the inversion by the curvature of the wind-speed profile, rather than by an infinite stability in the inversion separating two neutral layers, as assumed in the theory. In the absence of blocking terrain, observations of steady-state supercritical flows are not likely, due to the diurnal variation of flow criticality. In many simplified models, non-local processes are neglected. In the flows studied here, we showed that this is not always a valid approximation. Discrepancies between simulated katabatic flow and that predicted by an analytical model are hypothesized to be due to non-local effects, such as surface inhomogeneity and slope geometry, neglected in the theory. On a different scale, a reason for variations in the shape of local similarity scaling functions between studies is suggested to be differences in non-local contributions to the velocity variance budgets.
Resumo:
Dopo un’introduzione sull’economia nel mondo antico e nella Galilea, la tesi affronta una rappresentazione storica de “Il Mare di Galilea tra l’antichità e oggi” (cap. 3). Seguono i capitoli sulle “Tecniche e le attrezzature di pesca” (cap.4) e su “Città, villaggi e aree di pesca” (Cap. 5). Due capitoli riguardano più particolarmente l’attività economica in senso stretto: “L’organizzazione dell’attività” (cap. 6) e “Commercio ed esportazione” (cap. 7). Chiudono la tesi due capitoli di carattere più metodologico: una rappresentazione degli agenti sociali della pesca (“i pescatori”) condotta ispirandosi alla network Analysis e un’analisi antropologica del loro sistema di vita (capitolo finale).La tesi è basata essenzialmente su tre corpi di documentazione: papiri documentari, dati archeologici, fonti storiche e letterarie. Molti dei documenti reperiti, in lingua greca, non erano mai stati tradotti in lingue moderne.La tesi consta – oltre ai diversi capitoli – anche di un’appendice documentaria molto estesa
Resumo:
Insufficient and unrepresentative participation in voluntary public hearings and policy discussions has been problematic since Aristotle's time. In fisheries, research has shown that involvement is dominated by financially resourceful and extreme-opinion stakeholders and tends to advantage groups that have a lower cost of attendance. Stakeholders may exhibit only one or all of these traits but can be still similarly advantaged. The opposites of these traits tend to characterize the disadvantaged, such as the middle-ground opinions, the less wealthy or organized, and the more remote stakeholders. Remoteness or distance is the most straightforward and objective of these characteristics to measure. We analyzed the New England Fishery Management Council's sign-in sheets for 2003-2006, estimating participants' travel distance and associations with the groundfish, scallop, and herring industries. We also evaluated the representativeness of participation by comparing attendance to landings and permit distributions. The distance analysis showed a significant correlation between attendance levels and costs via travel distance. These results suggest a potential bias toward those stakeholders residing closer to meeting locations, possibly disadvantaging parties who are further and must incur higher costs. However, few significant differences were found between the actual fishing industry and attendee distributions, suggesting that the geographical distribution of the meeting attendees is statistically similar to that of the larger fishery. The interpretation of these results must take into consideration the limited time span of the analysis, as policy changes may have altered the industry make-up and location prior to our study. Furthermore, the limited geographical input of stakeholders may lend bias to the Council's perception of ecological and social conditions throughout the spatial range of the fishery. These factors should be further considered in the policy-formation process in order to incorporate a broader range of stakeholder input.
Resumo:
With the collapse of fisheries in many parts of the world causing widespread economic harm, attention is focused on a possible cause and remedy of fishery collapse. Economic theory for managing a renewable resource, such as a fishery, leads to an ecologically unstable equilibrium as difficult to maintain as balancing a marble on top of a dome. A fishery should be managed for ecological stability instead--in the analogy, as easy to maintain as keeping a marble near the base of a bowl. The goal of ecological stability is achieved if the target stock is above that producing maximum sustainable yield and harvested at less than the maximum sustainable yield. The cost of managing for ecological stability, termed "natural insurance," is low if the fishery is sufficiently productive. This cost is shown to pay for itself over the long term in a variable and uncertain environment. An ecologically stable target stock may be attained either with annually variable quotas following current practice or, preferably, through a market mechanism whereby fish are taxed at dockside if caught when the stock was below target and are untaxed otherwise. In this regulatory environment, the goal of maximizing short-term revenue coincides with the goal of ecological stability, thereby also maximizing long-term revenue. This new approach to fishery management is illustrated with the recently collapsed Newfoundland fishing industry. The Newfoundland cod fishery is expected to rebuild to an ecologically stable level in about 9 years and thereafter support an annual harvest of about 75% of the 1981-1990 average.
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The decline of the world's fisheries and the inability of traditional management frameworks to maintain them, has led managers to adopt alternative management frameworks. The use of dedicated access privileges have often been shown to have varying popularity among factions within the commercial fishing industry and managers. Here, we examine commercial fishers' preference for alternative management frameworks in the context of a unique multispecies fisheries of the Florida Keys. By surveying commercial fishers, we find that that the size of operation plays no role in affecting fisher perception regarding dedicated access privileges. Furthermore, fishers who are organized are less likely to support dedicated access privilege frameworks. Overall, we do not find enough support in the fishing industry for the implementation of dedicated access privileges in the Florida Keys. These findings can provide inputs in developing effective management plans in the region.
Resumo:
Acknowledgements Many parties contributed to making this paper a reality. This research was supported by the European Social and Research Council, grant ESRC ES/K006428/1. The author is particularly grateful to the grant’s holder, Professor David Anderson from the Department of Anthropology, University of Aberdeen, for his various support throughout this research. The Barents Center of the Humanities at Kola Science Center of the Russian Academy of Sciences in Apatity provided important institutional support. Officials from several fisheries management institutions of Arkhangelsk oblast, including Shiriaev Igor Alekseevich from Dvinsko-Pechorskoe Territorial Management Board, Skovorod’ko Artem Aleksandrovich from the Northern Basin Directorate of Fisheries and Water Biological Resources Conservation (Sevrybvod) and Korotenkov Aleksei Anatol’evich from the Fishing Industry Agency of Arkhangelsk oblast were very supportive and shared their knowledge wherever possible. Scholars Studenov Igor Ivanovich and Stasenkov Vladimir Aleksandrovich at Northern branch of the Knipovich Polar Research Institute of Marine Fisheries and Oceanography (SevPINRO) in Arkhangelsk provided their invaluable expertise on marine fisheries. Chairmen of several fishing collective farms – Tuchin Sergei Viktorovich, Samoilov Sergei Nikolaevich and Seliverstova Marina Nikolaevna – offered a great administrative support. Local residents of several villages in Mezen region were extremely generous and hospitable, providing places to stay, warm clothes, food, endless cups of tea, and most valuably, sparing their time. Finally, Natalie Wahnsiedler was a regular companion during fieldwork and a great source of inspiration for this research.
Resumo:
Acknowledgements Many parties contributed to making this paper a reality. This research was supported by the European Social and Research Council, grant ESRC ES/K006428/1. The author is particularly grateful to the grant’s holder, Professor David Anderson from the Department of Anthropology, University of Aberdeen, for his various support throughout this research. The Barents Center of the Humanities at Kola Science Center of the Russian Academy of Sciences in Apatity provided important institutional support. Officials from several fisheries management institutions of Arkhangelsk oblast, including Shiriaev Igor Alekseevich from Dvinsko-Pechorskoe Territorial Management Board, Skovorod’ko Artem Aleksandrovich from the Northern Basin Directorate of Fisheries and Water Biological Resources Conservation (Sevrybvod) and Korotenkov Aleksei Anatol’evich from the Fishing Industry Agency of Arkhangelsk oblast were very supportive and shared their knowledge wherever possible. Scholars Studenov Igor Ivanovich and Stasenkov Vladimir Aleksandrovich at Northern branch of the Knipovich Polar Research Institute of Marine Fisheries and Oceanography (SevPINRO) in Arkhangelsk provided their invaluable expertise on marine fisheries. Chairmen of several fishing collective farms – Tuchin Sergei Viktorovich, Samoilov Sergei Nikolaevich and Seliverstova Marina Nikolaevna – offered a great administrative support. Local residents of several villages in Mezen region were extremely generous and hospitable, providing places to stay, warm clothes, food, endless cups of tea, and most valuably, sparing their time. Finally, Natalie Wahnsiedler was a regular companion during fieldwork and a great source of inspiration for this research.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
During the year 1969, the fishing industry maintained a rate of increase that had been witnessed in the three previous years. The total catch landed was estimated at 125300 metric tons, valued at shs 130,500,000/-at the lakeside,and about shs 260,000,000/-in the retail market. This was an increase of 16,900 metric tons over the 1968 figure. The largest increases again came from the Lake Kyoga area, where the Nile Perch and the introduced Tilapia species are still expanding. Large numbers of fishermen from other regions (i.e. from Lake Victoria) moved to Lake Kyoga where catches were high and remunerative. This intensified fishing on this lake, resulting in the high figure of catches recorded. As in the previous year, there was a marked increase in the use of large-mesh gill-nets for catching Nile Perch and Tilapia. Individual Tilapia nilotica of up to 5 kg were quite common, and Nile Perch weighing over 50 kg were also regularly taken. The marketing and distribution side of the industry was as active as ever: 87 people took out specific licences, and 640 fishmongers were licensed by different urban authorities. Elsewhere in the Districts, 7,950 fishmongers were licensed. Host of the fish landed was consumed within Uganda and exports accounted for dnly a very small fraction of the market, mainly composed of frozen fiilets to Kenyai and salted fish to the Republic of the Congo. Kampala market was the most important one, serving also as a central market from where fishmongers bought fish for distribution to rural areas.
Resumo:
The annual report presents information on the following under fisheries section Breaches of Game Laws (Fish Sections) Development and Control of the Lake Victoria Fishing Industry. Collection of Statistics Statistical Tables.- (A) Number of half-yearly licences issued (B) Quantities and value of nets imported (C) Dried fish handled by Railways and Steamers (D) Smoked and salted fish exported to the Belgian Congo Mpondwe Customs Post Lake Bunyonyi Lake Mugisha (or Kaiyumbu) Lake Chahafi Lake Mulehe Lake Mutanda Lake Saka Lake Nabugabo Lake Kachira and Lake Kijanebalola Lake Kyoga Commercial Development:- Lake Edward and associated fisheries Uganda Fisheries Limited Nsonzi Fishery, Kigezi Experimental Nets in Lake Victoria Legislation (B) angling a) Trout (b) Nile pereh or mpufa
Resumo:
The fisheries section of the Annual report provides information on the following: Development and Control of the Victoria Nyanza Fishing Industry, Preparation of Statistics Statistical Tables: (A) Number of half yearly licences issued; (B) Quantities of nets imported; (0) Dried fish landed from Sese and Kome; (D) Dried fish imported from Mwanza ; (E) Dried fish exported to Belgian Congo; Lake Bunyonyi Lake Mutanda Lake Mureyhe Lake Mugisha (or Raiyumbu) I,ake Saka Lake Wamala Commercial Development: (i) Lake Albert: (ii) Lake Edward (iii) Other Waters (iv) Nsonzi Fishery, Kigezi (v) Introductions Experimental Nets and fisheries legislation