931 resultados para fish production
Resumo:
Studies on parasitic copepods from freshwater fishes are still in its infancy. In recent years, there- is a renewed enthusiasm in the study of freshwater fish parasites due to rapidly increasing aquaculture practices. The importance of diseases and their control assumes great significance because of the adverse impact of diseases on fish production and its economy. Copepods are one of the most harmful parasites of freshwater fishes. Reports on the damages caused by copepod parasites from different parts on the world are increasing alarmingly. But the information on parasitic copepods of freshwater fishes in India is quite meagre. Knowledge regarding this group of parasites, their Biology and pathology from Kerala. is lacking. The thesis consists of five chapters. The first chapter is a general introduction which deals with the review of literature on various aspects of parasitic copepods viz; systematics, life history, host-parasite relationship, ecology, pathogenicity, prophylaxis and control measures. Systematics of parasitic copepods of freshwater fishes collected during the present study forms the second chapter. The third chapter deals with the life cycle study of the new Lernaeid copepod, Lernaea osphronemi. The fourth chapter contains host-parasite relationship. ecology and treatment of ‘the’ new species of Lernaea On Osphronemus goramy. General observations and a summary of the entire work constitute the fifth chapter
Resumo:
Disproportionately little attention has been paid to the dry season trade-off between rice and (inland capture) fish production on the floodplains of Bangladesh, compared to the same trade-off during the flood season. As the rural economy grows increasingly dominated by dry-season irrigated rice production, and floodplain land and water come under ever-increasing pressure during the dry winter months, there is an urgent need to focus attention on these dry months that are so critical to the survival and propagation of the floodplain resident fish, and to the poor people that depend on these fish for their livelihood. This article examines three important dry-season natural resource constraints to floodplain livelihoods in Bangladesh, and finds a common factor at the heart of all three: rice cultivation on lands at low and very low elevations. The article articulates the system interlinkages that bind these constraints and the long-run trend towards irrigated rice cropping on lower-lying lands, and suggests a management approach based on locally tailored strategies to arrest this trend. Apart from its direct relevance to the floodplains of Bangladesh, which support more than 100 million people, these lessons have relevance for river floodplain systems elsewhere in the developing world, notably the Mekong Delta.
Resumo:
Brazilian fish farms presented an accelerated development during the early 90's, mainly because of the increase in fee-fishing operations. To meet the demand of this market, fish production and supply became excessive and, as a consequence, the number of fee-fishing operations, farmers and the final selling price, decreased. This study analyzes the technical aspects, production cost, profitability and economic viability of the production of piaucu (L. macrocephalus) in ponds, based on information from a rural property. Feeding and fingerling costs amount to approximately 47.1 % of the total production cost, representing together with the final selling price the most important factor affecting profitability. The payback period was 8.3 years, the liquid present value US$ 291.07, the internal return margin 9%, and the income-outcome ratio was 1.01, which represents an unattractive investment as a projection based on current conditions. The improvement in productive efficiency enhances the economic valuation index, and that the relative magnitude of cost and income are the most important points for the economic viability of the studied farm.
Resumo:
Biotechnology can currently be considered of importance in aquaculture. The increase in the production of aquatic organisms over the last two decades through the use of biotechnology indicates that in a few generations biotechnology may overtake conventional techniques, at least for the commercially more valuable species. In the last few years, genetics has contributed greatly to fish culture through the application of the more recent techniques developed in biotechnology and in genetic engineering. At present, the most commonly used methods in fish biotechnology are chromosome manipulation and hormonal treatments, which can be used to produce triploid, tetraploid, haploid, gynogenetic and androgenetic fish. These result in the production of individuals and lineages of sterile, monosex or highly endogamic fish. The use of such strategies in fish culture has as a practical objective the control of precocious sexual maturation in certain species; other uses are the production of larger specimens by control of the reproductive process and the attainment of monosex lines containing only those individuals of greater commercial value. The use of new technologies, such as those involved in gene transfer in many species, can result in modified individuals of great interest to aquaculturists and play important roles in specific programmes of fish production in the near future.
Resumo:
Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.
Resumo:
To study the macrobenthic community at Mahshahr creek four Creeks namely Bihad, Doragh, Ghazaleh and Ghanam were chosen. Sampling was conducted on bimonthly basis and carried out from August 1996 to June 1997, 216 sediment samples were collected from 12 stations using 0.1 m^2 Van Veen Grab, The stations were located at the mouth, middle and the end of each Creek. In situ measurements of temperature pH, DO and salinity were done using different sensors. The samples for the measurements of TOM, grain size were collected and analysed in vitro. The results indicate spatial and temporal heterogeneity in the structure of macro faunal assemblages of the creeks. A total of 12 macrofaunal groups were identified within the study area. Amphipods were the most dominant group (43%) followed by polychaetes (42%), copepods (3.5%), tanaids (3.1%) and other groups (8.4%). The range for the numerical abundance of macrobenthos was between 12583 to 3648 individual per m2 and the variation was done to different bottom texture the variable environment conditions governing the different parts of each creek as well as within creeks. Application of diversity indices (Shannon H and Simpson indices) on the dominant macrobenthic assemblages (crustaceans & polychaetes) was varied between 1 to 2.5 being higher in Bihad and Ghanarn and much reduced Shannon H index or a higher Simpson in Ghazaleh. Probably brought about activities in this creek. Gut content analysis of four species of fish showed that the main food items consist of Crab, Shrimps and other crustacean species, The secondary production of macrobenthic fauna and hence a fish production were assessed. To do this first the production of most dominant species Apseudes sp. was computed through Cohort analysis. The total macrobenthic production was estimated and from this fish production was computed. The macrobenthic and fish secondary productions were 24300 tons/year) and 24300 (tons/year) respectively. These values were lower than those with similar areas in the Indian Ocean.
Resumo:
The data from the able sources has been used in this paper to make observations on the exploitation of the fish stocks in Lake Victoria since 1981. The paper focuses on species composition of the catch, catch rates, average size of the individual fish landed and fish production. On the basis of these parameters and developments in the fishery, the paper also presents some observations and comments on the future prospects of the fish stocks in the lake.
Resumo:
There are 46 different fish species in the Lake Kyoga basin with some of them endemic. The Nile Perch (Lates niloticus) was introduced into the main Lake Kyoga, Nakuwa and Bisina in the late 1950s to increase the fish production. The Nile Perch profileration in lakes Kyoga and Nakuwa led to the almost complete elimination of many native fish species such as Orechromis esculentus and variabilis, Mormyrus kanumme, Schilbe mystus and several Haplochromines species. Lakes Mburo, Kachera, Nakivali and Kijjanebalora are part of the complex system of lakes separated from Lake Victoria by extended swamps known as the Koki lakes, some of the satellite lakes in the Lake Victoria basin. The fisheries of these lakes are important as they contribute to government efforts of increasing food security, poverty reduction and conservation of natural resource base. These lakes are important biodiversity areas because some of these lakes have been found to contain the native tilapiine Oreochromis esculentus (Ngege), absent or threatened with extinction in the main Lakes Victoria and Kyoga. It’s also important to note that this species is only unique to the Victoria and Kyoga lake basins (Graham, 1929, Worthington, 1929). The values of some of these lake fisheries are however, threatened by human activities such as over exploitation, introduction of exotics especially water hyacinth that is already present in River Rwizi and habitat degradation among others.
Resumo:
Fish introductions have been made from small fish ponds to the largest lakes in Africa. The primary intent of these introductions has been to sustain or increase fish production, although some introductions have been made to develop sport fisheries and to control unwanted organisms. Some of these introductions have fulfilled their objective in the short term, but several of these "successful" introductions have created uncertainties about their long term sustainability. Lates niloticus, Oreochromis niloticus, O. leucostictus, Tilapia melanopleura and T. zilli were introduced into lakes Victoria and Kyoga in 1950s and early 1960s. By the 1980s O. niloticus and O. niloticus dominated the fisheries of these lakes, virtually eliminating a number of endemic fish species. The loss of genetic diversity of the fish in the worlds second largest lake has also been accompanied by a loss of trophic diversity. The transformation of the fish community has, in Lake Victoria coincided with a profound eutrophication (algal blooms, fish kills, hypolimnetic anoxia) which might be related to alterations of the lake's food-web structure. In contrast, the introduction of a planktivore, Limnothrissa miodon into Lake Kivu and the Kariba reservoir has established highly successful fisheries with little documented effect on the pre-existing fish community or trophic ecology of the lakes. The highly endemised species-rich African Great lakes may be particularly sensitive to species introductions and require special consideration and caution when introductions are contemplated because species extinctions, introgressive hybridization and ecosystem alterations may occur following fish introductions.
Resumo:
2015
Resumo:
Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.
Resumo:
Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.
Resumo:
This joint DPI/Burdekin Shire Council project assessed the efficacy of a pilot-scale biological remediation system to recover Nitrogen (N) and Phosphorous (P) nutrients from secondary treated municipal wastewater at the Ayr Sewage Treatment Plant. Additionally, this study considered potential commercial uses for by-products from the treatment system. Knowledge gained from this study can provide directions for implementing a larger-scale final effluent treatment protocol on site at the Ayr plant. Trials were conducted over 10 months and assessed nutrient removal from duckweed-based treatments and an algae/fish treatment – both as sequential and as stand-alone treatment systems. A 42.3% reduction in Total N was found through the sequential treatment system (duckweed followed by algae/fish treatment) after 6.6 days Effluent Retention Time (E.R.T.). However, duckweed treatment was responsible for the majority of this nutrient recovery (7.8 times more effective than algae/fish treatment). Likewise, Total P reduction (15.75% reduction after 6.6 days E.R.T.) was twice as great in the duckweed treatment. A phytoplankton bloom, which developed in the algae/fish tanks, reduced nutrient recovery in this treatment. A second trial tested whether the addition of fish enhanced duckweed treatment by evaluating systems with and without fish. After four weeks operation, low DO under the duckweed blanket caused fish mortalities. Decomposition of these fish led to an additional organic load and this was reflected in a breakdown of nitrogen species that showed an increase in organic nitrogen. However, the Dissolved Inorganic Nitrogen (DIN: ammonia, nitrite and nitrate) removal was similar between treatments with and without fish (57% and 59% DIN removal from incoming, respectively). Overall, three effluent residence times were evaluated using duckweed-based treatments; i.e. 3.5 days, 5.5 days and 10.4 days. Total N removal was 37.5%, 55.7% and 70.3%, respectively. The 10.4-day E.R.T. trial, however, was evaluated by sequential nutrient removal through the duckweed-minus-fish treatment followed by the duckweed-plus-fish treatment. Therefore, the 70.3% Total N removal was lower than could have been achieved at this retention time due to the abovementioned fish mortalities. Phosphorous removal from duckweed treatments was greatest after 10.4-days E.R.T. (13.6%). Plant uptake was considered the most important mechanism for this P removal since there was no clay substrate in the plastic tanks that could have contributed to P absorption as part of the natural phosphorous cycle. Duckweed inhibited phytoplankton production (therefore reducing T.S.S) and maintained pH close to neutral. DO beneath the duckweed blanket fell to below 1ppm; however, this did not limit plant production. If fish are to be used as part of the duckweed treatment, air-uplifts can be installed that maintain DO levels without disturbing surface waters. Duckweed grown in the treatments doubled its biomass on average every 5.7 days. On a per-surface area basis, 1.23kg/m2 was harvested weekly. Moisture content of duckweed was 92%, equating to a total dry weight harvest of 0.098kg/m2/week. Nutrient analysis of dried duckweed gave an N content of 6.67% and a P content of 1.27%. According to semi-quantitative analyses, harvested duckweed contained no residual elements from the effluent stream that were greater than ANZECC toxicant guidelines proposed for aquaculture. In addition, jade perch, a local aquaculture species, actively consumed and gained weight on harvested duckweed, suggesting potential for large-scale fish production using by-products from the effluent treatment process. This suggests that a duckweed-based system may be one viable option for tertiary treatment of Ayr municipal wastewater. The tertiary detention lagoon proposed by the Burdekin Shire Council, consisting of six bays approximately 290 x 35 metres (x 1.5 metres deep), would be suitable for duckweed culture with minor modification to facilitate the efficient distribution of duckweed plants across the entire available growing surface (such as floating containment grids). The effluent residence time resulting from this proposed configuration (~30 days) should be adequate to recover most effluent nutrients (certainly N) based on the current trial. Duckweed harvest techniques on this scale, however, need to be further investigated. Based on duckweed production in the current trial (1.23kg/m2/week), a weekly harvest of approximately 75 000kg (wet weight) could be expected from the proposed lagoon configuration under full duckweed production. A benefit of the proposed multi-bay lagoon is that full lagoon production of duckweed may not be needed to restore effluent to a desirable standard under the present nutrient load, and duckweed treatment may be restricted to certain bays. Restored effluent could be released without risk of contaminating the receiving waterway with duckweed by evacuating water through an internal standpipe located mid-way in the water column.
Resumo:
PICES science – 2006 (pdf, 0.1 Mb) 2006 Wooster Award (pdf, 0.1 Mb) Thank you note from the Past-Chairman of PICES (pdf, 0.1 Mb) A comparison of regional mechanisms for fish production: Ecosystem perspectives (pdf, 0.3 Mb) 2006 CREAMS/PICES international workshop and summer school (pdf, 0.2 Mb) PICES Calendar (pdf, 0.2 Mb) 2006 Harmful Algal Bloom Section annual workshop (pdf, 0.1 Mb) 2006 PICES Workshop on “Modeling iron biogeochemistry and ocean ecosystems” (pdf, 0.1 Mb) Strolling through the NEMURO ecosystem model (pdf, 0.1 Mb) Climate and marine birds and mammals in the North Pacific (pdf, 0.2 Mb) Photo highlights of the PICES Fifteenth Annual Meeting (pdf, 3.5 Mb) Recent trends in waters of the subarctic NE Pacific: Cooler and fresher in summer of 2006 (pdf, 0.2 Mb) The state of the western North Pacific in the first half of 2006 (pdf, 0.3 Mb) Latest and upcoming PICES publications (pdf, 0.3 Mb) A seven-year effort of the PICES CCCC MODEL Task Team culminates in a dedicated issue of Ecological Modelling (pdf, 0.1 Mb) Japan joins PICES Marine Metadata Federation (pdf, 0.3 Mb) Argo: A 2006 status report (pdf, 0.3 Mb) New Chairmen in PICES (pdf, 0.2 Mb) PICES Interns (pdf, 0.2 Mb)
Resumo:
Highlights of PICES VI The state of the eastern North Pacific in the first half of 1997 The state of the western North Pacific in the first half of 1997 The status of the Bering Sea in the first eight month of 1997 Organization of fisheries, environmental and ocean science in Canada Richard James Beamish PICES-GLOBEC Climate Change and Carrying Capacity Program Epipelagic fish production in the open Subarctic Pacific: bottom up or self-regulating control? Activity Report of SCOR Working Group 105 Establishment of Marine Information Research Center: new strategy on oceanographic data management in Japan Bering Sea Ecosystem Biophysical Metadatabase: a collaborative research tool for fisheries-oceanography and ecosystem investigations