920 resultados para finite-time tracking
Resumo:
Processing efficiency theory predicts that anxiety reduces the processing capacity of working memory and has detrimental effects on performance. When tasks place little demand on working memory, the negative effects of anxiety can be avoided by increasing effort. Although performance efficiency decreases, there is no change in performance effectiveness. When tasks impose a heavy demand on working memory, however, anxiety leads to decrements in efficiency and effectiveness. These presumptions were tested using a modified table tennis task that placed low (LWM) and high (HWM) demands on working memory. Cognitive anxiety was manipulated through a competitive ranking structure and prize money. Participants' accuracy in hitting concentric circle targets in predetermined sequences was taken as a measure of performance effectiveness, while probe reaction time (PRT), perceived mental effort (RSME), visual search data, and arm kinematics were recorded as measures of efficiency. Anxiety had a negative effect on performance effectiveness in both LWM and HWM tasks. There was an increase in frequency of gaze and in PRT and RSME values in both tasks under high vs. low anxiety conditions, implying decrements in performance efficiency. However, participants spent more time tracking the ball in the HWM task and employed a shorter tau margin when anxious. Although anxiety impaired performance effectiveness and efficiency, decrements in efficiency were more pronounced in the HWM task than in the LWM task, providing support for processing efficiency theory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvectors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal growth rates, wave number, and phase shifts (between the density and potential fluctuations) are time dependent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously attributed to nonlinearity.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
The linear properties of an electromagnetic drift-wave model are examined. The linear system is non-normal in that its eigenvectors are not orthogonal with respect to the energy inner product. The non-normality of the linear evolution operator can lead to enhanced finite-time growth rates compared to modal growth rates. Previous work with an electrostatic drift-wave model found that nonmodal behavior is important in the hydrodynamic limit. Here, similar behavior is seen in the hydrodynamic regime even with the addition of magnetic fluctuations. However, unlike the results for the electrostatic drift-wave model, nonmodal behavior is also important in the adiabatic regime with moderate to strong magnetic fluctuations. © 2000 American Institute of Physics.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem and the H2-norm controller reduction problem, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through linear matrix inequalities formulations. Examples illustrate the results.
Resumo:
As it follows from the classical analysis, the typical final state of a dark energy universe where a dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a number of dark energy universes (including scalar phantom and effective phantom theories as well as specific quintessence models) we demonstrate that quantum effects play the dominant role near a big rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to the transient character of the phantom evolution stage. Some examples of cosmological evolution for a negative, time-dependent equation of state are also considered with the same conclusions. The application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics is briefly discussed.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Reformulações e relaxação Lagrangiana para o problema de dimensionamento de lotes com várias plantas
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative method, an asymptotic model for small wave steepness ratio is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical results is performed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)