997 resultados para field-dependence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline or single-crystal ferroelectric materials present dielectric dispersion in the frequency range 100 MHz-1 GHz that has been attributed to a dispersive ( relaxation-like) mechanism as well as a resonant mechanism. Particularly in 'normal' ferroelectric materials, a dielectric response that is indistinguishable from dispersion or a resonance has been reported. Nevertheless, the reported results are not conclusive enough to distinguish each mechanism clearly. A detailed study of the dielectric dispersion phenomenon has been carried out in PbTiO3-based ferroelectric ceramics, with the composition Pb1-xLaxTiO3 (x = 0.15), over a wide range of temperatures and frequencies, including microwave frequencies. The dielectric response of La-modified lead titanate ferroelectric ceramics, in 'virgin' and poled states, has been investigated in the temperature and frequency ranges 300-450 K and 1 kHz-2 GHz, respectively. The results revealed that the frequency dependence of the dielectric anomalies, depending on the measuring direction with respect to the orientation of the macroscopic polarization, may be described as a general mechanism related to an 'over-damped' resonant process. Applying either a uniaxial stress along the measurement field direction or a poling electric field parallel and/or perpendicular to the measuring direction, a resonant response of the real and imaginary components of the dielectric constant is observed, in contrast to the dispersion behavior obtained in the absence of the stress, for the 'virgin' samples. Both results, resonance and/or dispersion, can be explained by considering a common mechanism involving a resonant response (damped and/or over-damped) which is strongly affected by a ferroelastic-ferroelectric coupling, contributing to the low-field dielectric constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of two- and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 31nb-1, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. The results are compared to 2.76 TeV semi-peripheral PbPb collision data, collected during the 2011 PbPb run, covering a similar range of particle multiplicities. The observed correlations are characterized by the near-side (|δφ|≈0) associated pair yields and the azimuthal anisotropy Fourier harmonics (vn). The second-order (v2) and third-order (v3) anisotropy harmonics are extracted using the two-particle azimuthal correlation technique. A four-particle correlation method is also applied to obtain the value of v2 and further explore the multi-particle nature of the correlations. Both associated pair yields and anisotropy harmonics are studied as a function of particle multiplicity and transverse momentum. The associated pair yields, the four-particle v2, and the v3 become apparent at about the same multiplicity. A remarkable similarity in the v3 signal as a function of multiplicity is observed between the pPb and PbPb systems. Predictions based on the color glass condensate and hydrodynamic models are compared to the experimental results. © 2013 CERN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report new archeointensity data obtained from the analyses of baked clay elements (architectural and kiln brick fragments) sampled in Southeast Brazil and historically and/or archeologically dated between the end of the XVIth century and the beginning of the XXth century AD. The results were determined using the classical Thellier and Thellier protocol as modified by Coe, including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and the Triaxe protocol, which involves continuous high-temperature magnetization measurements. In both protocols, TRM anisotropy and cooling rate TRM dependence effects were taken into account for intensity determinations which were successfully performed for 150 specimens from 43 fragments, with a good agreement between intensity results obtained from the two procedures. Nine site-mean intensity values were derived from three to eight fragments and defined with standard deviations of less than 8%. The site-mean values vary from similar to 25 mu T to similar to 42 mu T and describe in Southeast Brazil a continuous decreasing trend by similar to 5 mu T per century between similar to 1600 AD and similar to 1900 AD. Their comparison with recent archeointensity results obtained from Northeast Brazil and reduced at a same latitude shows that: (1) the geocentric axial dipole approximation is not valid between these southeastern and northeastern regions of Brazil, whose latitudes differ by similar to 10 degrees, and (2) the available global geomagnetic field models (gufm1 models, their recalibrated versions and the CALSK3 models) are not sufficiently precise to reliably reproduce the non-dipole field effects which prevailed in Brazil for at least the 1600-1750 period. The large non-dipole contribution thus highlighted is most probably linked to the evolution of the South Atlantic Magnetic Anomaly (SAMA) during that period. Furthermore, although our dataset is limited, the Brazilian archeointensity data appear to support the view of a rather oscillatory behavior of the axial dipole moment during the past three centuries that would have been marked in particular by a moderate increase between the end of the XVIIIth century and the middle of the XIXth century followed by the well-known decrease from 1840 AD attested by direct measurements. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An explosive synchronization can be observed in scale-free networks when Kuramoto oscillators have natural frequencies equal to their number of connections. The present paper reports on mean-field approximations to determine the critical coupling of such explosive synchronization. It has been verified that the equation obtained for the critical coupling has an inverse dependence on the network average degree. This expression differs from those whose frequency distributions are unimodal and even. In this case, the critical coupling depends on the ratio between the first and second statistical moments of the degree distribution. Numerical simulations were also conducted to verify our analytical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that any two Poisson dependent elements in a free Poisson algebra and a free Poisson field of characteristic zero are algebraically dependent, thus answering positively a question from Makar-Limanov and Umirbaev (2007) [8]. We apply this result to give a new proof of the tameness of automorphisms for free Poisson algebras of rank two (see Makar-Limanov and Umirbaev (2011) [9], Makar-Limanov et al. (2009) [10]). (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this Ph.D. dissertation is the study of clustering dependent data by means of copula functions with particular emphasis on microarray data. Copula functions are a popular multivariate modeling tool in each field where the multivariate dependence is of great interest and their use in clustering has not been still investigated. The first part of this work contains the review of the literature of clustering methods, copula functions and microarray experiments. The attention focuses on the K–means (Hartigan, 1975; Hartigan and Wong, 1979), the hierarchical (Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999, 2000, 2007) clustering techniques because their performance is compared. Then, the probabilistic interpretation of the Sklar’s theorem (Sklar’s, 1959), the estimation methods for copulas like the Inference for Margins (Joe and Xu, 1996) and the Archimedean and Elliptical copula families are presented. In the end, applications of clustering methods and copulas to the genetic and microarray experiments are highlighted. The second part contains the original contribution proposed. A simulation study is performed in order to evaluate the performance of the K–means and the hierarchical bottom–up clustering methods in identifying clusters according to the dependence structure of the data generating process. Different simulations are performed by varying different conditions (e.g., the kind of margins (distinct, overlapping and nested) and the value of the dependence parameter ) and the results are evaluated by means of different measures of performance. In light of the simulation results and of the limits of the two investigated clustering methods, a new clustering algorithm based on copula functions (‘CoClust’ in brief) is proposed. The basic idea, the iterative procedure of the CoClust and the description of the written R functions with their output are given. The CoClust algorithm is tested on simulated data (by varying the number of clusters, the copula models, the dependence parameter value and the degree of overlap of margins) and is compared with the performance of model–based clustering by using different measures of performance, like the percentage of well–identified number of clusters and the not rejection percentage of H0 on . It is shown that the CoClust algorithm allows to overcome all observed limits of the other investigated clustering techniques and is able to identify clusters according to the dependence structure of the data independently of the degree of overlap of margins and the strength of the dependence. The CoClust uses a criterion based on the maximized log–likelihood function of the copula and can virtually account for any possible dependence relationship between observations. Many peculiar characteristics are shown for the CoClust, e.g. its capability of identifying the true number of clusters and the fact that it does not require a starting classification. Finally, the CoClust algorithm is applied to the real microarray data of Hedenfalk et al. (2001) both to the gene expressions observed in three different cancer samples and to the columns (tumor samples) of the whole data matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excitation spectrum is one of the fundamental properties of every spatially extended system. The excitations of the building blocks of normal matter, i.e., protons and neutrons (nucleons), play an important role in our understanding of the low energy regime of the strong interaction. Due to the large coupling, perturbative solutions of quantum chromodynamics (QCD) are not appropriate to calculate long-range phenomena of hadrons. For many years, constituent quark models were used to understand the excitation spectra. Recently, calculations in lattice QCD make first connections between excited nucleons and the fundamental field quanta (quarks and gluons). Due to their short lifetime and large decay width, excited nucleons appear as resonances in scattering processes like pion nucleon scattering or meson photoproduction. In order to disentangle individual resonances with definite spin and parity in experimental data, partial wave analyses are necessary. Unique solutions in these analyses can only be expected if sufficient empirical information about spin degrees of freedom is available. The measurement of spin observables in pion photoproduction is the focus of this thesis. The polarized electron beam of the Mainz Microtron (MAMI) was used to produce high-intensity, polarized photon beams with tagged energies up to 1.47 GeV. A "frozen-spin" Butanol target in combination with an almost 4π detector setup consisting of the Crystal Ball and the TAPS calorimeters allowed the precise determination of the helicity dependence of the γp → π0p reaction. In this thesis, as an improvement of the target setup, an internal polarizing solenoid has been constructed and tested. A magnetic field of 2.32 T and homogeneity of 1.22×10−3 in the target volume have been achieved. The helicity asymmetry E, i.e., the difference of events with total helicity 1/2 and 3/2 divided by the sum, was determined from data taken in the years 2013-14. The subtraction of background events arising from nucleons bound in Carbon and Oxygen was an important part of the analysis. The results for the asymmetry E are compared to existing data and predictions from various models. The results show a reasonable agreement to the models in the energy region of the ∆(1232)-resonance but large discrepancies are observed for energy above 600 MeV. The expansion of the present data in terms of Legendre polynomials, shows the sensitivity of the data to partial wave amplitudes up to F-waves. Additionally, a first, preliminary multipole analysis of the present data together with other results from the Crystal Ball experiment has been as been performed.