899 resultados para fertilização artificial


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection by measuring and analyzing vibration signals in a machine component is an established procedure in mechanical and aerospace engineering. This paper presents vibration signature analysis of steel bridge structures in a nonconventional way using artificial neural networks (ANN). Multilayer perceptrons have been adopted using the back-propagation algorithm for network training. The training patterns in terms of vibration signature are generated analytically for a moving load traveling on a trussed bridge structure at a constant speed to simulate the inspection vehicle. Using the finite-element technique, the moving forces are converted into stationary time-dependent force functions in order to generate vibration signals in the structure and the same is used to train the network. The performance of the trained networks is examined for their capability to detect damage from unknown signatures taken independently at one, three, and five nodes. It has been observed that the prediction using the trained network with single-node signature measurement at a suitability chosen location is even better than that of three-node and five-node measurement data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increased number of new services and users being added to the communication network, management of such networks becomes crucial to provide assured quality of service. Finding skilled managers is often a problem. To alleviate this problem and also to provide assistance to the available network managers, network management has to be automated. Many attempts have been made in this direction and it is a promising area of interest to researchers in both academia and industry. In this paper, a review of the management complexities in present day networks and artificial intelligence approaches to network management are presented. Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper elucidates the methodology of applying artificial neural network model (ANNM) to predict the percent swell of calcitic soil in sulphuric acid solutions, a complex phenomenon involving many parameters. Swell data required for modelling is experimentally obtained using conventional oedometer tests under nominal surcharge. The phases in ANN include optimal design of architecture, operation and training of architecture. The designed optimal neural model (3-5-1) is a fully connected three layer feed forward network with symmetric sigmoid activation function and trained by the back propagation algorithm to minimize a quadratic error criterion.The used model requires parameters such as duration of interaction, calcite mineral content and acid concentration for prediction of swell. The observed strong correlation coefficient (R2 = 0.9979) between the values determined by the experiment and predicted using the developed model demonstrates that the network can provide answers to complex problems in geotechnical engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is designed to develop a new technique for site characterization in a three-dimensional domain. Site characterization is a fundamental task in geotechnical engineering practice, as well as a very challenging process, with the ultimate goal of estimating soil properties based on limited tests at any half-space subsurface point in a site.In this research, the sandy site at the Texas A&M University's National Geotechnical Experimentation Site is selected as an example to develop the new technique for site characterization, which is based on Artificial Neural Networks (ANN) technology. In this study, a sequential approach is used to demonstrate the applicability of ANN to site characterization. To verify its robustness, the proposed new technique is compared with other commonly used approaches for site characterization. In addition, an artificial site is created, wherein soil property values at any half-space point are assumed, and thus the predicted values can compare directly with their corresponding actual values, as a means of validation. Since the three-dimensional model has the capability of estimating the soil property at any location in a site, it could have many potential applications, especially in such case, wherein the soil properties within a zone are of interest rather than at a single point. Examples of soil properties of zonal interest include soil type classification and liquefaction potential evaluation. In this regard, the present study also addresses this type of applications based on a site located in Taiwan, which experienced liquefaction during the 1999 Chi-Chi, Taiwan, Earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As power systems grow in their size and interconnections, their complexity increases. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems be operated closer to design limits. Hence power system voltage stability and voltage control are emerging as major problems in the day-to-day operation of stressed power systems. For secure operation and control of power systems under normal and contingency conditions it is essential to provide solutions in real time to the operator in energy control center (ECC). Artificial neural networks (ANN) are emerging as an artificial intelligence tool, which give fast, though approximate, but acceptable solutions in real time as they mostly use the parallel processing technique for computation. The solutions thus obtained can be used as a guide by the operator in ECC for power system control. This paper deals with development of an ANN architecture, which provide solutions for monitoring, and control of voltage stability in the day-to-day operation of power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past two decades, many ingenious efforts have been made in protein remote homology detection. Because homologous proteins often diversify extensively in sequence, it is challenging to demonstrate such relatedness through entirely sequence-driven searches. Here, we describe a computational method for the generation of `protein-like' sequences that serves to bridge gaps in protein sequence space. Sequence profile information, as embodied in a position-specific scoring matrix of multiply aligned sequences of bona fide family members, serves as the starting point in this algorithm. The observed amino acid propensity and the selection of a random number dictate the selection of a residue for each position in the sequence. In a systematic manner, and by applying a `roulette-wheel' selection approach at each position, we generate parent family-like sequences and thus facilitate an enlargement of sequence space around the family. When generated for a large number of families, we demonstrate that they expand the utility of natural intermediately related sequences in linking distant proteins. In 91% of the assessed examples, inclusion of designed sequences improved fold coverage by 5-10% over searches made in their absence. Furthermore, with several examples from proteins adopting folds such as TIM, globin, lipocalin and others, we demonstrate that the success of including designed sequences in a database positively sensitized methods such as PSI-BLAST and Cascade PSI-BLAST and is a promising opportunity for enormously improved remote homology recognition using sequence information alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial viscosity in SPH-based computations of impact dynamics is a numerical artifice that helps stabilize spurious oscillations near the shock fronts and requires certain user-defined parameters. Improper choice of these parameters may lead to spurious entropy generation within the discretized system and make it over-dissipative. This is of particular concern in impact mechanics problems wherein the transient structural response may depend sensitively on the transfer of momentum and kinetic energy due to impact. In order to address this difficulty, an acceleration correction algorithm was proposed in Shaw and Reid (''Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics'', Comput. Methods Appl. Mech. Engrg., 198, 3962-3974) and further rationalized in Shaw et al. (An Optimally Corrected Form of Acceleration Correction Algorithm within SPH-based Simulations of Solid Mechanics, submitted to Comput. Methods Appl. Mech. Engrg). It was shown that the acceleration correction algorithm removes spurious high frequency oscillations in the computed response whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. In this paper, we aim at gathering further insights into the acceleration correction algorithm by further exploring its application to problems related to impact dynamics. The numerical evidence in this work thus establishes that, together with the acceleration correction algorithm, SPH can be used as an accurate and efficient tool in dynamic, inelastic structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.