179 resultados para faulting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures, mineralogy and chemistry of four representative samples collected from cores extracted from the Japan Trench during Integrated Ocean Drilling Project Expedition 343, the Japan Trench Fast Drilling Project (JFAST) have been studied using optical microscopy, TEM, SEM, XRF, XRD and microprobe analyses. The samples provide a transect from relatively undeformed marine sediments in the hanging wall, to the undeformed footwall material, crossing the thrust interface between the Pacific and North American plate, where the fault slipped during the March 2011 Tohoku-Oki earthquake. Our preliminary results suggest that the low strength of JFAST fault gouge material is caused by the high amount of clay minerals (~ 60% smectite, ~ 14 illite). Clay minerals in the décollement (gouge) sample are partly replaced by newly formed manganese oxide, which precipitated from hydrothermal fluids. Dauphine twins were found in quartz grains of the décollement sample suggesting local high stress possible during seismic loading. Other microstructures cannot be assigned unambiguously to co-seismic or a-seismic faulting processes. The observed scaly clay fabric is consistent with observations in many other plate-boundary fault zones. Significant grain size reduction was found in the fault (decollement) zone sample. But a change in lithology of the fault material cannot be ruled out. Microstructures typical for a-seismic deformation like dissolution-precipitation features (e.g. dissolved grain boundaries, mineral alteration) occur in all JFAST core samples, but more frequently in the décollement sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exhumed faults hosting hydrothermal systems provide direct insight into relationships between faulting and fluid flow, which in turn are valuable for making hydrogeological predictions in blind settings. The Grimsel Breccia Fault (Aar massif, Central Swiss Alps) is a late Neogene, exhumed dextral strike-slip fault with a maximum displacement of 25–45 m, and is associated with both fossil and active hydrothermal circulation. We mapped the fault system and modelled it in three dimensions, using the distinctive hydrothermal mineralisation as well as active thermal fluid discharge (the highest elevation documented in the Alps) to reveal the structural controls on fluid pathway extent and morphology. With progressive uplift and cooling, brittle deformation inherited the mylonitic shear zone network at Grimsel Pass; preconditioning fault geometry into segmented brittle reactivations of ductile shear zones and brittle inter-shear zone linkages. We describe ‘pipe’-like, vertically oriented fluid pathways: (1) within brittle fault linkage zones and (2) through alongstrike- restricted segments of formerly ductile shear zones reactivated by brittle deformation. In both cases, low-permeability mylonitic shear zones that escaped brittle reactivation provide important hydraulic seals. These observations show that fluid flow along brittle fault planes is not planar, but rather highly channelised into sub-vertical flow domains, with important implications for the exploration and exploitation of geothermal energy.