1000 resultados para fault resistance
Resumo:
Acetylcholinesterase is the target of organophosphate and carbamate pesticides. Organophosphate resistance is widespread in the cattle tick, Boophilus microplus, in Australia. We have isolated a cDNA of acetylcholinesterase from B. microplus and show that it would encode a protein 62 kDa in size. The predicted amino acid sequence contains all the residues characteristic of an acetylcholinesterase. Alternative splicing of the transcript was detected at both the 5' and 3' ends. Alternative splicing at the 5' end would result in two proteins differing by six amino acids. This is the first report of alternative splicing of the N-terminal coding region in a cholinesterase. No point mutations were detected in the acetylcholinesterase gene from organophosphate resistant strains of B. microplus. Alternative explanations for resistance to organophosphates in B. microplus are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Tissue susceptibility and resistance to infection with the yeast Candida albicans is genetically regulated. Analysis of the strain distribution pattern of the C. albicans resistance gene (Carg1) and additional gene and DNA segment markers in the AKXL recombinant inbred (RI) set showed that 13/15 RI strains were concordant for Carg1, Tcra and Rib1. Therefore, Carg1 is probably located within a 17 cM segment of chromosome 14, within approximately 4 cM of the other two genes. (C) 1998 Academic Press.
Resumo:
The severity of systemic infection with the yeast Candida albicans has been shown to be under complex genetic control. C57/L mice carry an allele that is associated with an increase in tissue destruction when compared with C57BI/6 mice; however, the gene affects only the severity of tissue lesions, and does not influence the magnitude of the fungal burden in either kidney or brain. Studies in [C57/L x C57BI/6]F1 hybrid mice, and [C57/L x C57BI/6]F1 x C57/L backcross mice, demonstrated that the gene behaves as a simple Mendelian co-dominant. (C) 1998 Academic Press.
Resumo:
Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.
Resumo:
We generated transgenic sugarcane plants that express an albicidin detoxifying gene (albD), which was cloned from a bacterium that provides biocontrol against leaf scald disease. Plants with albicidin detoxification capacity equivalent to 1-10 ng of AlbD enzyme per mg of leaf protein did not develop chlorotic disease symptoms in inoculated leaves, whereas all untransformed control plants developed severe symptoms. Transgenic lines with high AlbD activity in young stems were also protected against systemic multiplication of the pathogen, which is the precursor to economic disease. We have shown that genetic modification to express a toxin-resistance gene can confer resistance to both disease symptoms and multiplication of a toxigenic pathogen in its host.
Resumo:
We investigated the role of monooxygenases in resistance to synthetic pyrethroids (SPs) in the cattle tick, Boophilus microplus. We found that monooxygenases play only a minor role in resistance to SPs in both resistant and susceptible strains of B. microplus. We blocked the monooxygenases with piperonyl butoxide (PBO) and simultaneously applied the SPs, flumethrin and cypermethrin to larval B. microplus. PBO increased the effect of flumethrin (synergism ratios 2.7-8.9) more than it increased the effect of cypermethrin (synergism ratios 1.9-3.1). Of the four strains tested, Parkhurst, which is resistant to SPs, was the least affected by the addition of PBO (synergism ratios after cypermethrin was applied 1.9; after flumethrin 2.7) whereas N.R.F.S., the strain susceptible to SPs, was the most affected by synergism between PBO and SPs (synergism ratio after cypermethrin was applied 3.1; after flumethrin 8.9). We hypothesize that B. microplus lacks monooxygenases capable of conferring resistance to SPs because it and its recent ancestors were blood-feeders rather than herbivores.
Resumo:
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.
Resumo:
Intraspecific Drosophila studies suggest that resistance to heal and cold stresses are largely independent and that correlations across life cycle stages are low whereas comparisons of Drosophila species indicate correlations between heat and cold resistance as well as between resistance levels in different life cycle stages. These inconsistent results may reflect differences in associations among traits at the interspecific and intraspecific levels or interspecific correlations arising because of correlated selection pressures. These alternatives were tested using Drosophila serrata, D. birchii and hybrids derived from these species. Variation among hybrid lines and families was used to test associations at the interspecific level while intraspecific variation was examined using isofemale lines of D. serrata. There was a significant association between adult heat knockdown time at 38 degreesC and adult cold resistance in one set of hybrid lines. An association between female knockdown resistance to heat and larval heat resistance was also evident in one set of hybrids. Resistance to heat anti cold at the larval stage were not correlated at either the intraspecific or interspecific levels. At the intraspecific level, lan al heat resistance and two measures of adult heat resistance were uncorrelated. Moreover, adult and larval cold resistance measures were not correlated at either the intraspecific or interspecific levels. These results suggest that there are no associations between resistance to heat and cold extremes and that extreme temperature resistance is largely independent across life cycle stages at both the intraspecific and interspecific levels. Species associations may therefore arise from correlated selection pressures rather than trait correlations. (C) 2000 The Linnean Society of London.
Resumo:
Yeast cells were used as a model system to study the inter-relationship among free radicals, antioxidants and UV-induced cell damage. In particular, the effects of UV-radiation in newly isolated yeasts from the Antarctic have been studied.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
Resumo:
We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.