938 resultados para fat metabolism
Resumo:
Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.
Resumo:
Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.
Resumo:
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Resumo:
1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology.
Resumo:
Adult-onset growth hormone (GH) deficiency (GHD) is associated with insulin resistance and decreased exercise capacity. Intramyocellular lipids (IMCL) depend on training status, diet, and insulin sensitivity. Using magnetic resonance spectroscopy, we studied IMCL content following physical activity (IMCL-depleted) and high-fat diet (IMCL-repleted) in 15 patients with GHD before and after 4 mo of GH replacement therapy (GHRT) and in 11 healthy control subjects. Measurements of insulin resistance and exercise capacity were performed and skeletal muscle biopsies were carried out to assess expression of mRNA of key enzymes involved in skeletal muscle lipid metabolism by real-time PCR and ultrastructure by electron microscopy. Compared with control subjects, patients with GHD showed significantly higher difference between IMCL-depleted and IMCL-repleted. GHRT resulted in an increase in skeletal muscle mRNA expression of IGF-I, hormone-sensitive lipase, and a tendency for an increase in fatty acid binding protein-3. Electron microscopy examination did not reveal significant differences after GHRT. In conclusion, variation of IMCL may be increased in patients with GHD compared with healthy control subjects. Qualitative changes within the skeletal muscle (i.e., an increase in free fatty acids availability from systemic and/or local sources) may contribute to the increase in insulin resistance and possibly to the improvement of exercise capacity after GHRT. The upregulation of IGF-I mRNA suggests a paracrine/autocrine role of IGF-I on skeletal muscle.
Resumo:
Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.
Resumo:
It is unclear whether regular exercise alone (no caloric restriction) is a useful strategy to reduce adiposity and obesity-related metabolic risk factors in obese girls. We examined the effects of aerobic (AE) vs. resistance exercise (RE) alone on visceral adipose tissue (VAT), intrahepatic lipid, and insulin sensitivity in obese girls. Forty-four obese adolescent girls (BMI ≥95th percentile, 12-18 yr) with abdominal obesity (waist circumference 106.5 ± 11.1 cm) were randomized to 3 mo of 180 min/wk AE (n = 16) or RE (n = 16) or a nonexercising control group (n = 12). Total fat and VAT were assessed by MRI and intrahepatic lipid by proton magnetic resonance spectroscopy. Intermuscular AT (IMAT) was measured by CT. Insulin sensitivity was evaluated by a 3-h hyperinsulinemic (80 mU·m(2)·min(-1)) euglycemic clamp. Compared with controls (0.13 ± 1.10 kg), body weight did not change (P > 0.1) in the AE (-1.31 ± 1.43 kg) and RE (-0.31 ± 1.38 kg) groups. Despite the absence of weight loss, total body fat (%) and IMAT decreased (P < 0.05) in both exercise groups compared with control. Compared with control, significant (P < 0.05) reductions in VAT (Δ-15.68 ± 7.64 cm(2)) and intrahepatic lipid (Δ-1.70 ± 0.74%) and improvement in insulin sensitivity (Δ0.92 ± 0.27 mg·kg(-1)·min(-1) per μU/ml) were observed in the AE group but not the RE group. Improvements in insulin sensitivity in the AE group were associated with the reductions in total AT mass (r = -0.65, P = 0.02). In obese adolescent girls, AE but not RE is effective in reducing liver fat and visceral adiposity and improving insulin sensitivity independent of weight loss or calorie restriction.
Resumo:
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Resumo:
Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
OBJECTIVE Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. DESIGN Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. RESULTS Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). CONCLUSION A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD.
Resumo:
Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^
Resumo:
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the import of triglyceride-derived fatty acids by muscle, for utilization, and adipose tissue (AT), for storage. Relative ratios of LPL expression in these two tissues have therefore been suggested to determine body mass composition as well as play a role in the initiation and/or development of obesity. To test this, LPL knockout mice were mated to transgenics expressing LPL under the control of a muscle-specific promoter (MCK) to generate induced mutants with either relative (L2-MCK) or absolute AT LPL deficiency (L0-MCK). L0-MCK mice had normal weight gain and body mass composition. However, AT chemical composition indicated that LPL deficiency was compensated for by large increases in endogenous AT fatty acid synthesis. Histological analysis confirmed that such up-regulation of de novo fatty acid synthesis in L0-MCK mice could produce normal amounts of AT as early as 20 h after birth. To assess the role of AT LPL during times of profound weight gain, L0-MCK and L2-MCK genotypes were compared on the obese ob/ob background. ob/ob mice rendered deficient in AT LPL (L0-MCK-ob/ob) also demonstrated increased endogenous fatty acid synthesis but had diminished weight and fat mass. These findings reveal marked alterations in AT metabolism that occur during LPL deficiency and provide strong evidence for a role of AT LPL in one type of genetic obesity.
Resumo:
Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.
Resumo:
Endurance-trained athletes experience a low level of postprandial lipaemia, but this rapidly increases with detraining. We sought to determine whether detraining-induced changes to postprandial metabolism influenced endothelial function and inflammation. Eight endurance-trained men each undertook two oral fat tolerance tests [blood taken fasted and for 6 h following a high-fat test meal (80 g fat, 80 g carbohydrate)]: one during a period of their normal training (trained) and one after 1 wk of no exercise (detrained). Endothelial function in the cutaneous microcirculation was assessed using laser Doppler imaging with iontophoresis in the fasted state and 4 h postprandially during each test. Fasting plasma triglyceride (TG) concentrations increased by 35% with detraining (P = 0.002), as did postprandial plasma (by 53%, P = 0.002), chylomicron (by 68%, P = 0.02) and very low-density lipoprotein (by 51%, P = 0.005) TG concentrations. Endothelial function decreased postprandially in both the trained (by 17%, P = 0.03) and detrained (by 22%, P = 0.03) conditions but did not differ significantly between the trained and detrained conditions in either the fasted or the postprandial states. These results suggest that, although fat ingestion induces endothelial dysfunction, interventions that alter postprandial TG metabolism will not necessarily concomitantly influence endothelial function.