963 resultados para familial disease
Resumo:
Recent epidemiological studies show a strong reduction in the incidence of Alzheimer's disease in patients treated with cholesterol-lowering statins. Moreover, elevated Aβ42 levels and the ɛ4 allele of the lipid-carrier apolipoprotein E are regarded as risk factors for sporadic and familial Alzheimer's disease. Here we demonstrate that the widely used cholesterol-lowering drugs simvastatin and lovastatin reduce intracellular and extracellular levels of Aβ42 and Aβ40 peptides in primary cultures of hippocampal neurons and mixed cortical neurons. Likewise, guinea pigs treated with high doses of simvastatin showed a strong and reversible reduction of cerebral Aβ42 and Aβ40 levels in the cerebrospinal fluid and brain homogenate. These results suggest that lipids are playing an important role in the development of Alzheimer's disease. Lowered levels of Aβ42 may provide the mechanism for the observed reduced incidence of dementia in statin-treated patients and may open up avenues for therapeutic interventions.
Resumo:
Five to ten percent of individuals with melanoma have another affected family member, suggesting familial predisposition. Germ-line mutations in the cyclin-dependent kinase (CDK) inhibitor p16 have been reported in a subset of melanoma pedigrees, but their prevalence is unknown in more common cases of familial melanoma that do not involve large families with multiple affected members. We screened for germ-line mutations in p16 and in two other candidate melanoma genes, p19ARF and CDK4, in 33 consecutive patients treated for melanoma; these patients had at least one affected first or second degree relative (28 independent families). Five independent, definitive p16 mutations were detected (18%, 95% confidence interval: 6%, 37%), including one nonsense, one disease-associated missense, and three small deletions. No mutations were detected in CDK4. Disease-associated mutations in p19ARF, whose transcript is derived in part from an alternative codon reading frame of p16, were only detected in patients who also had mutations inactivating p16. We conclude that germ-line p16 mutations are present in a significant fraction of individuals who have melanoma and a positive family history.
Resumo:
Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These animals display clinical and pathological features closely resembling human ALS. Early changes observed in these animals were intra-axonal and dendritic vacuoles due to dilatation of the endoplasmic reticulum and vacuolar degeneration of mitochondria. We have reported that the Golgi apparatus of spinal cord motor neurons in patients with sporadic ALS is fragmented and atrophic. In this study we show that spinal cord motor neurons of transgenic mice for an SOD1 mutation display a lesion of the Golgi apparatus identical to that found in humans with sporadic ALS. In these mice, the stacks of the cisternae of the fragmented Golgi apparatus are shorter than in the normal organelle, and there is a reduction in Golgi-associated vesicles and adjacent cisternae of the rough endoplasmic reticulum. Furthermore, the fragmentation of the Golgi apparatus occurs in an early, presymptomatic stage and usually precedes the development of the vacuolar changes. Transgenic mice overexpressing the wild-type human superoxide dismutase are normal. In familial ALS, an early lesion of the Golgi apparatus of motor neurons may have adverse functional effects, because newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.
Resumo:
The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either beta-cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.
Resumo:
Apolipoprotein E (apoE) is critical in the modulation of cholesterol and phospholipid transport between cells of different types. Human apoE is a polymorphic protein with three common alleles, APO epsilon 2, APO epsilon 3, and APO epsilon 4. ApoE4 is associated with sporadic and late-onset familial Alzheimer disease (AD). Gene dose was shown to have an effect on risk of developing AD, age of onset, accumulation of senile plaques in the brain, and reduction of choline acetyltransferase (ChAT) activity in the hippocampus of AD subjects. To characterize the possible impact of the apoE4 allele on cholinergic markers in AD, we examined the effect of apoE4 allele copy number on pre- and postsynaptic markers of cholinergic activity. ApoE4 allele copy number showed an inverse relationship with residual brain ChAT activity and nicotinic receptor binding sites in both the hippocampal formation and the temporal cortex of AD subjects. AD cases lacking the apoE4 allele showed ChAT activities close or within age-matched normal control values. The effect of the apoE4 allele on cholinomimetic drug responsiveness was assessed next in a group (n = 40) of AD patients who completed a double-blind, 30-week clinical trial of the cholinesterase inhibitor tacrine. Results showed that > 80% of apoE4-negative AD patients showed marked improvement after 30 weeks as measured by the AD assessment scale (ADAS), whereas 60% of apoE4 carriers had ADAS scores that were worse compared to baseline. These results strongly support the concept that apoE4 plays a crucial role in the cholinergic dysfunction associated with AD and may be a prognostic indicator of poor response to therapy with acetylcholinesterase inhibitors in AD patients.
Resumo:
The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.
Resumo:
Inheritance of specific apolipoprotein E (apoE) alleles determines, in large part, the risk and mean age of onset of late-onset familial and sporadic Alzheimer disease. The mechanism by which the apoE isoforms differentially contribute to disease expression is, however, unknown. Isoform-specific differences have been identified in the binding of apoE to the microtubule-associated protein tau, which forms the paired helical filament and neurofibrillary tangles, and to amyloid beta peptide, a major component of the neuritic plaque. These and other isoform-specific interactions of apoE give rise to testable hypotheses for the mechanism(s) of pathogenesis of Alzheimer disease. An unresolved issue of increasing importance is the relationship between the structural pathological lesions and the cellular pathogenesis responsible for the clinical disease phenotype, progressive dementia. The identification of apoE in the cytoplasm of human neurons and the characterization of isoform-specific binding of apoE to the microtubule-associated proteins tau and MAP-2 present the possibility that apoE may affect microtubule function in the Alzheimer brain.
Resumo:
The human genome contains many repeated DNA sequences that vary in complexity of repeating unit from a single nucleotide to a whole gene. The repeat sequences can be widely dispersed or in simple tandem arrays. Arrays of up to 5 or 6 nt are known as simple tandem repeats, and these are widely dispersed and highly polymorphic. Members of one group of the simple tandem repeats, the trinucleotide repeats, can undergo an increase in copy number by a process of dynamic mutation. Dynamic mutations of the CCG trinucleotide give rise to one group of fragile sites on human chromosomes, the rare folate-sensitive group. One member of this group, the fragile X (FRAXA) is responsible for the most common familial form of mental retardation. Another member of the group FRAXE is responsible for a rarer mild form of mental retardation. Similar mutations of AGC repeats give rise to a number of neurological disorders. The expanded repeats are unstable between generations and somatically. The intergenerational instability gives rise to unusual patterns of inheritance--particularly anticipation, the increasing severity and/or earlier age of onset of the disorder in successive generations. Dynamic mutations have been found only in the human species, and possible reasons for this are considered. The mechanism of dynamic mutation is discussed, and a number of observations of simple tandem repeat mutation that could assist in understanding this phenomenon are commented on.
Resumo:
In 10-30% of hypertrophic cardiomyopathy kindreds, the disease is caused by > 29 missense mutations in the cardiac beta-myosin heavy chain (MYH7) gene. The amino acid sequence similarity between chicken skeletal muscle and human beta-cardiac myosin and the three-dimensional structure of the chicken skeletal muscle myosin head have provided the opportunity to examine the structural consequences of these naturally occurring mutations in human beta-cardiac myosin. This study demonstrates that the mutations are related to distinct structural and functional domains. Twenty-four are clustered around four specific locations in the myosin head that are (i) associated with the actin binding interface, (ii) around the nucleotide binding site, (iii) adjacent to the region that connects the two reactive cysteine residues, and (iv) in close proximity to the interface of the heavy chain with the essential light chain. The remaining five mutations are in the myosin rod. The locations of these mutations provide insight into the way they impair the functioning of this molecular motor and also into the mechanism of energy transduction.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Aim: Vascular disease such as cardiovascular and cerebrovascular diseases, or retinopathy, nephropathy and neuropathy are common in diabetes. Maturity - onset diabetes of the young (MODY) describes a clinically heterogeneous group of familial diabetes characterized by monogenic, autosomal dominant inheritance that generally results from beta cell dysfunction. This study aims to assess the presence of vascular complications on Portuguese patients with a clinical diagnosis of MODY.
Resumo:
Aims: Lisosomal Acid Lipase Deficiency (LALD), historical known as Cholesterol Ester Storage Disease (CESD), is an autosomal lisosomal storage recessive disorder and an unrecognized cause of dyslipidaemia. Mutations in LIPA gene are the underlying cause of LALD, being a mutation in the splice site of exon 8 the most common cause of the disease. Patients with LALD present dyslipidaemia and altered liver function. The aim of this work was to analyze LIPA gene in patients with unexplained dyslipidaemia.
Resumo:
Introduction: Familial hypercholesterolaemia (FH) is a common genetic cause of premature coronary heart disease (CHD) due to lifelong elevated plasma low-density lipoprotein (LDL) levels. Worldwide only 40 % of patients (FH+) with a clinical diagnosis of FH carry a mutation in any of the three genes (namely: LDLR, APOB, PCSK 9) that are currently known to be associated to the disease. We guess that the remaining 60 % of the patients (FH-) probably includes a high percentage of individuals with a polygenic form of dyslipidemia or an environmental form of hypercholesterolemia and a small percentage of individuals with mutations in some novel genes, never associated before with dyslipidemias. Here we present the preliminary results of an integrative approach intended to identify new candidate genes and to dissect pathways that can be dysregulated in the disease.
Resumo:
Aims: Familial hypercholesterolemia (FH) is a genetic disorder of lipid metabolism, clinically characterised by high levels of low-density lipoprotein cholesterol (LDL-C) that leads to cholesterol accumulation in tendons and arteries, premature atherosclerosis and increased risk of premature coronary heart disease. In 1999, the Portuguese FH Study was established at the National Institute of Health to identify the genetic cause of hypercholesterolemia in individuals with a clinical diagnosis of FH and to perform an epidemiologic study to determine the prevalence and distribution of FH in Portugal. In the last 16 years, a genetic defect was identified in 749 patients, representing 3. 7 % of the cases estimated to exist in Portugal. Index patients were included in this study using the Simon Broome (SB) criteria. However, there are different FH clinical criteria to diagnose index cases. Since there are no clinical criteria to identify relatives with FH, the aim of this work was to investigate if a diagnostic tool based on population specific 95 th percentile improves the clinical identification of Portuguese FH patients comparing with SB criteria.
Resumo:
Background Women genetically predisposed to breast cancer often develop the disease at a young age when dense breast tissue reduces the sensitivity of X-ray mammography. Our aim was, therefore, to compare contrast enhanced magnetic resonance imaging (CE MRI) with mammography for screening. Methods We did a prospective multicentre cohort study in 649 women aged 35-49 years with a strong family history of breast cancer or a high probability of a BRCA1, BRCA2, or TP53 mutation. We recruited participants from 22 centres in the UK, and offered the women annual screening with CE MRI and mammography for 2-7 years. Findings We diagnosed 35 cancers in the 649 women screened with both mammography and CE MRI (1881 screens): 19 by CE MRI only, six by mammography only, and eight by both, with two interval cases. Sensitivity was significantly higher for CE MRI (77%, 95% CI 60-90) than for mammography (40%, 24-58; p=0.01), and was 94% (81-99) when both methods were used. Specificity was 93% (92-95) for mammography, 81% (80-83) for CE MRI (p