249 resultados para extracelullar amastigotes
Resumo:
A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.
Resumo:
The in vitro activity of four 2-nitropropene derivatives, 1-(3-benzothienyl)-2-nitropropene (N1), 1-(3-thienyl)-2-nitropropene (N2), 1-(5-bromo-2-thienyl)-2-nitropropene (N3) and 1-(4-bromo-2-thienyl)-2-nitropropene (N4), were tested against cultures of the parasite Trypanosoma cruzi. Cytotoxicity studies were performed using Vero cells. The blood trypomastigotes, amastigotes and epimastigotes showed differential degrees of sensitivity towards the four tested compounds; the highest activity against the epimastigotes and blood tripomastigotes was exhibited by N1, followed by N3, N4 and finally N2. In contrast, whereas the compounds N1, N3 and N4 exerted similar magnitudes of activity against amastigotes, N2 was found to be a much less potent compound. According to our results, the compound N1 had the highest level of activity (IC50: 0.6 μM) against epimastigotes.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
This review will focus on two general approaches carried out at the Sandler Center, University of California, San Francisco, to address the challenge of developing new drugs for the treatment of Chagas disease. The first approach is target-based drug discovery, and two specific targets, cytochrome P450 CYP51 and cruzain (aka cruzipain), are discussed. A "proof of concept" molecule, the vinyl sulfone inhibitor K777, is now a clinical candidate. The preclinical assessment compliance for filing as an Investigational New Drug with the United States Food and Drug Administration (FDA) is presented, and an outline of potential clinical trials is given. The second approach to identifying new drug leads is parasite phenotypic screens in culture. The development of an assay allowing high throughput screening of Trypanosoma cruzi amastigotes in skeletal muscle cells is presented. This screen has the advantage of not requiring specific strains of parasites, so it could be used with field isolates, drug resistant strains or laboratory strains. It is optimized for robotic liquid handling and has been validated through a screen of a library of FDA-approved drugs identifying 65 hits.
Resumo:
Leishmaniasis is one of the most important parasitic infections, but current treatments are unsatisfactory due to their toxicity, cost and resistance. Therefore, the development of new antileishmanial compounds is imperative. Many people who live in endemic areas use plants as an alternative to treat the disease. In this paper, we characterised the essential oil from Piper auritum, evaluated its cytotoxicity and determined its antileishmanial activity. The chromatogram obtained by gas chromatography revealed 60 peaks and we found that safrole was the most abundant compound, composing 87% of the oil. The oil was active against the promastigotes of Leishmania major, Leishmania mexicana, Leishmania braziliensis and Leishmania donovani with a favourable selectivity index against peritoneal macrophages from BALB/c mice. The Piper-oil inhibited the growing of intracellular amastigotes of L. donovani with an IC50 value of 22.3 ± 1.8 μg/mL. This study demonstrates the usefulness of the essential oils as a promising alternative to treat leishmaniasis.
Resumo:
The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL) and S-carvone (IC50 6.1 ± 2.2 μg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.
Resumo:
The need for drug combinations to treat visceral leishmaniasis (VL) arose because of resistance to antimonials, the toxicity of current treatments and the length of the course of therapy. Calcium channel blockers (CCBs) have shown anti-leishmanial activity; therefore their use in combination with standard drugs could provide new alternatives for the treatment of VL. In this work, in vitro isobolograms of Leishmania (Leishmania) chagasi using promastigotes or intracellular amastigotes were utilised to identify the interactions between five CCBs and the standard drugs pentamidine, amphotericin B and glucantime. The drug interactions were assessed with a fixed ratio isobologram method and the fractional inhibitory concentrations (FICs), sum of FICs (ΣFICs) and the overall mean ΣFIC were calculated for each combination. Graphical isobologram analysis showed that the combination of nimodipine and glucantime was the most promising in amastigotes with an overall mean ΣFIC value of 0.79. Interactions between CCBs and the anti-leishmanial drugs were classified as indifferent according to the overall mean ΣFIC and the isobologram graphic analysis.
Resumo:
In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during metacyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide (NO) production. The doses of KMP-11, the IL-10 levels and the intracellular amastigote loads were strongly, positively and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10 neutralising antibodies, but not by isotype controls. The neutralising antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. In this study, the exacerbating effect of KMP-11 on macrophage infection with Leishmania is for the first time demonstrated, implicating it as a virulence factor in L. amazonensis. The stimulation of IL-10 production and arginase activity and the inhibition of NO synthesis are likely involved in this effect.
Resumo:
The activity of five (1-5) abietane phenol derivatives against Leishmania infantum and Leishmania braziliensis was studied using promastigotes and axenic and intracellular amastigotes. Infectivity and cytotoxicity tests were performed with J774.2 macrophage cells using Glucantime as a reference drug. The mechanisms of action were analysed by performing metabolite excretion and transmission electron microscopy ultrastructural studies. Compounds 1-5 were more active and less toxic than Glucantime. The infection rates and mean number of parasites per cell observed in amastigote experiments showed that derivatives 2, 4 and 5 were the most effective against both L. infantum and L. braziliensis. The ultrastructural changes observed in the treated promastigote forms confirmed that the greatest cell damage was caused by the most active compound (4). Only compound 5 caused changes in the nature and amounts of catabolites excreted by the parasites, as measured by ¹H nuclear magnetic resonance spectroscopy. All of the assayed compounds were active against the two Leishmania species in vitro and were less toxic in mammalian cells than the reference drug.
The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis
Resumo:
Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.
Resumo:
Astrocytes play a vital role in neuronal protection, homeostasis, vascular interchange and the local immune response. Some viruses and parasites can cross the blood-brain barrier and infect glia. Trypanosoma cruzi, the aetiological agent of Chagas disease, can seriously compromise the central nervous system, mainly in immune-suppressed individuals, but also during the acute phase of the infection. In this report, the infective capacity of T. cruzi in a human astrocyte tumour-derived cell line was studied. Astrocytes exposed to trypomastigotes (1:10 ratio) produced intracellular amastigotes and new trypomastigotes emerged by day 4 post-infection (p.i.). At day 6 p.i., 93% of the cells were infected. Using flow cytometry, changes were observed in both the expression of major histocompatibility complex class I and II molecules and the chemokine secretion pattern of astrocytes exposed to the parasite. Blocking the low-density lipoprotein receptor on astrocytes did not reduce parasite intracellular infection. Thus, T. cruzi can infect astrocytes and modulate the immune response during central nervous system infection.
Resumo:
Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.
Resumo:
Fibrocytes are important for understanding the progression of many diseases because they are present in areas where pathogenic lesions are generated. However, the morphology of fibrocytes and their interactions with parasites are poorly understood. In this study, we examined the morphology of peripheral blood fibrocytes and their interactions with Leishmania (L.) amazonensis . Through ultrastructural analysis, we describe the details of fibrocyte morphology and how fibrocytes rapidly internaliseLeishmania promastigotes. The parasites differentiated into amastigotes after 2 h in phagolysosomes and the infection was completely resolved after 72 h. Early in the infection, we found increased nitric oxide production and large lysosomes with electron-dense material. These factors may regulate the proliferation and death of the parasites. Because fibrocytes are present at the infection site and are directly involved in developing cutaneous leishmaniasis, they are targets for effective, non-toxic cell-based therapies that control and treat leishmaniasis.
Resumo:
This study is the first phytochemical investigation of Selaginella sellowii and demonstrates the antileishmanial activity of the hydroethanolic extract from this plant (SSHE), as well as of the biflavonoids amentoflavone and robustaflavone, isolated from this species. The effects of these substances were evaluated on intracellular amastigotes of Leishmania (Leishmania) amazonensis, an aetiological agent of American cutaneous leishmaniasis. SSHE was highly active against intracellular amastigotes [the half maximum inhibitory concentration (IC50) = 20.2 µg/mL]. Fractionation of the extract led to the isolation of the two bioflavonoids with the highest activity: amentoflavone, which was about 200 times more active (IC50 = 0.1 μg/mL) and less cytotoxic than SSHE (IC50 = 2.2 and 3 μg/mL, respectively on NIH/3T3 and J774.A1 cells), with a high selectivity index (SI) (22 and 30), robustaflavone, which was also active against L. amazonensis (IC50 = 2.8 µg/mL), but more cytotoxic, with IC50 = 25.5 µg/mL (SI = 9.1) on NIH/3T3 cells and IC50 = 3.1 µg/mL (SI = 1.1) on J774.A1 cells. The production of nitric oxide (NO) was lower in cells treated with amentoflavone (suggesting that NO does not contribute to the leishmanicidal mechanism in this case), while NO release was higher after treatment with robustaflavone. S. sellowii may be a potential source of biflavonoids that could provide promising compounds for the treatment of cutaneous leishmaniasis.
Resumo:
This study examined whether the antidermatophytic activity of essential oils (EOs) can be used as an indicator for the discovery of active natural products against Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using broth microdilution techniques, the obtained EOs were tested against three strains of dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities against axenic amastigotes of L. amazonensis were concurrently evaluated. For the most promising EOs, their antileishmanial activities against parasites infecting peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited the lowest 50% inhibitory concentration (IC50) values against axenic amastigotes, thus revealing a certain correspondence between both activities. The P. hispidum EO was identified as the most promising product in the results from the infected macrophages model (IC50: 4.7 µg/mL, safety index: 8). The most abundant compounds found in this EO were sesquiterpenes, notably curzerene and furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs appears to be an efficient method for identifying new potential drugs for the treatment of L. amazonensis.