964 resultados para extracellular matrix components


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown a positive association of cancer and obesity, but the morphological and molecular mechanisms involved in this relationship are still unknown. This study analysed the impact of long-term obesity on rat prostate, focusing on stromal changes. Male adult Wistar rats were treated with high-fat diet to induce obesity, while the control group received a balanced diet. After 30 weeks of feeding, the ventral prostate was analysed by immunohistochemistry for cell proliferation, smooth muscle α-actin, vimentin, chondroitin sulphate and metalloproteinases (MMP-2 and 9). The content of androgen receptor (AR), oestrogen receptors (ERs) and vascular endothelial growth factor (VEGF) was measured by Western blotting, and activity of catalase and Glutathione-S-Transferase (GST) were quantified by enzymatic assay. Long-term obesity decreased testosterone plasma levels by 70% and resulted in stromal prostate hyperplasia, as evidenced by increased collagen fibres. Such stromal hyperplasia was associated with increased number of blood vessels and raised VEGF content, and increased expression of chondroitin sulphate, vimentin, α-actin and MMP-9. In spite of the high cell density in prostate, the proliferative activity was lower in the prostates of obese rats, indicating that hyperplasia was established during the early phases in this obesity model. AR levels increased significantly, whereas the ERα decreased in this group. Moreover, the levels of catalase and GST were changed considerably. These findings indicate that long-term obesity, besides disturbing the antioxidant control, causes intense stromal remodelling and release of factors that create an environment that can promote proliferative disorders in the gland, culminating with diffuse hyperplasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Doxorubicin can cause cardiotoxicity. Matrix metalloproteinases (MMP) are responsible for degrading extracellular matrix components which play a role in ventricular dilation. Increased MMP activity occurs after chronic doxorubicin treatment. In this study we evaluated in vivo and in vitro cardiac function in rats with acute doxorubicin treatment, and examined myocardial MMP and inflammatory activation, and gene expression of proteins involved in myocyte calcium transients. Methods: Wistar rats were injected with doxorubicin (Doxo, 20 mg/kg) or saline (Control). Echocardiogram was performed 48 h after treatment. Myocardial function was assessed in vitro in Langendorff preparation. Results: In left ventricle, doxorubicin impaired fractional shortening (Control 0.59 +/- 0.07; Doxo 0.51 +/- 0.05; p < 0.001), and increased isovolumetric relaxation time (Control 20.3 +/- 4.3; Doxo 24.7 +/- 4.2 ms; p = 0.007) and myocardial passive stiffness. MMP-2 activity, evaluated by zymography, was increased in Doxo (Control 141338 +/- 8924; Doxo 188874 +/- 7652 arbitrary units; p < 0.001). There were no changes in TNF-alpha, INF-gamma, IL-10, and ICAM-1 myocardial levels. Expression of phospholamban, Serca-2a, and ryanodine receptor did not differ between groups. Conclusion: Acute doxorubicin administration induces in vivo left ventricular dysfunction and in vitro increased myocardial passive stiffness in rats. Cardiac dysfunction is related to myocardial MMP-2 activation. Increased inflammatory stimulation or changed expression of the proteins involved in intracellular calcium transients is not involved in acute cardiac dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mandibular condyle from 20-day-old rats was examined in the electron microscope with particular attention to intracellular secretory granules and extracellular matrix. Moreover, type II collagen was localized by an immunoperoxidase method. The condyle has been divided into five layers: (1) the most superficial, articular layer, (2) polymorphic cell layer, (3) flattened cell layer, (4) upper hypertrophic, and (5) lower hypertrophic cell layers. In the articular layer, the cells seldom divide, but in the polymorphic layer and upper part of the flattened cell layer, mitosis gives rise to new cells. In these layers, cells produce two types of secretory granules, usually in distinct stacks of the Golgi apparatus; type a, cylindrical granules, in which 300-nm-long threads are packed in bundles which appear lucent after formaldehyde fixation; and type b, spherical granules loaded with short, dotted filaments. The matrix is composed of thick banded lucent fibrils in a loose feltwork of short, dotted filaments. The cells arising from mitosis undergo endochondral differentiation, which begins in the lower part of the flattened cell layer and is completed in the upper hypertrophic cell layer; it is followed by gradual cell degeneration in the lower hypertrophic cell layer. The cells produce two main types of secretory granules: type b as above; and type c, ovoid granules containing 300-nm-long threads associated with short, dotted filaments. A possibly different secretory granule, type d, dense and cigar-shaped, is also produced. The matrix is composed of thin banded fibrils in a dense feltwork. In the matrix of the superficial layers, the lucency of the fibrils indicated that they were composed of collagen I, whereas the lucency of the cylindrical secretory granules suggested that they transported collagen I precursors to the matrix. Moreover, the use of ruthenium red indicated that the feltwork was composed of proteoglycan; the dotted filaments packed in spherical granules were similar to, and presumably the source of, the matrix feltwork. The superficial layers did not contain collagen II and were collectively referred to as perichondrium. In the deep layers, the ovoid secretory granules displayed collagen II antigenicity and were likely to transport precursors of this collagen to the matrix, where it appeared in the thin banded fibrils. That these granules also carried proteoglycan to the matrix was suggested by their content of short dotted filaments. Thus the deep layers contained collagen II and proteoglycan as in cartilage; they were collectively referred to as the hyaline cartilage region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical beta-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 +/- 871.03 nM and 1,239.23 +/- 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 +/- 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Altered deposition of extracellular matrix (ECM) in the airway smooth muscle (ASM) layer as observed in asthma may influence ASM mechanical properties. We hypothesized that ECM in ASM is associated with airway function in asthma. First, we investigated the difference in ECM expression in ASM between asthma and controls. Second, we examined whether ECM expression is associated with bronchoconstriction and bronchodilation in vivo. Methods: Our cross-sectional study comprised 19 atopic mild asthma patients, 15 atopic and 12 nonatopic healthy subjects. Spirometry, methacholine responsiveness, deep-breath-induced bronchodilation (Delta R-rs) and bronchoscopy with endobronchial biopsies were performed. Positive staining of elastin, collagen I, III and IV, decorin, versican, fibronectin, laminin and tenascin in ASM was quantified as fractional area and mean density. Data were analysed using Pearson's or Spearman's correlation coefficient. Results: Extracellular matrix expression in ASM was not different between asthma and controls. In asthmatics, fractional area and mean density of collagen I and III were correlated with methacholine dose-response slope and DRrs, respectively (r = 0.71, P < 0.01; r = 0.60, P = 0.02). Furthermore, ASM collagen III and laminin in asthma were correlated with FEV1 reversibility (r = -0.65, P = 0.01; r = -0.54, P = 0.04). Conclusion: In asthma, ECM in ASM is related to the dynamics of airway function in the absence of differences in ECM expression between asthma and controls. This indicates that the ASM layer in its full composition is a major structural component in determining variable airways obstruction in asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the effects of hypercholesterolemic diet on the collagen composition of urinary bladder wall. Materials and methods: Forty-five female 4-week-old Wistar rats were divided into three groups: 1) control group fed a normal diet (ND); 2) model of bladder outlet obstruction (BOO) group fed a ND; and 3) group fed a HCD (1.25% cholesterol). Total serum cholesterol, LDL cholesterol and body weight were assessed at baseline. Four weeks later, group 2 underwent a surgical procedure resulting in a partial BOO, while groups 1 and 3 underwent a sham similar surgical procedure. Six weeks later, all animals had their bladders removed; serum cholesterol and LDL cholesterol levels and body weights were measured. Morphological and morphometric analysis was performed by Picrosirius staining and collagen types I and III were identified by immunofluorescence. Statistical analysis was completed and significance was considered when p<0.05. Results: Rats fed an HCD exhibited a significant increase in LDL cholesterol levels (p<0.001) and body weight (p=0.017), when compared to the groups fed a ND during the ten-week study period. Moreover, the HCD induced morphological alterations of the bladder wall collagen, regarding thin collagen fibers and the amounts of type III collagen when compared to the control group (p=0.002 and p=0.016, respectively), resembling the process promoted in the BOO model. Conclusions: A hyper-cholesterolemic diet in Wistar rats promoted morphological changes of the bladder types of collagen, as well as increases in body weight and LDL cholesterol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the role of myoepithelial cell and tumor microenvironment in salivary gland neoplasma, we have performed a study towards the effect of different extracellular matrix proteins (basement membrane matrix, type I collagen and fibronectin) on morphology and differentiation of benign myoepithelial cells from pleomorphic adenoma cultured with malignant cell culture medium from squamous cell carcinoma. We have also analyzed the expression of alpha-smooth muscle actin (alpha-SMA) and FGF-2 by immunofluorescence and qPCR. Our immunofluorescence results, supported by qPCR analysis, demonstrated that alpha-SMA and FGF-2 were upregulated in the benign myoepithelial cells from pleomorphic adenoma in all studied conditions on fibronectin substratum. However, the myoepithelial cells on fibronectin substratum did not alter their morphology under malignant conditioned medium stimulation and exhibited a stellate morphology and, occasionally focal adhesions with the substratum. In summary, our data demonstrated that the extracellular matrix exerts an important role in the morphology of the benign myoepithelial cells by the presence of focal adhesions and also inducing increase FGF-2 and alpha-SMA expression by these cells, especially in the fibronectin substratum. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chondrocytes live isolated in the voluminous extracellular matrix of cartilage, which they secrete and is neither vascularized nor innervated. Nutrient and waste exchanges occur through diffusion leading to low oxygen tension around the cells. Consequently even normal cartilage under normal physiological conditions suffers from a poor reparative potential that predisposes to degenerative conditions, such as osteoarthritis of the joints, with significant clinical effects.rnOne of the key challenges in medicine is the structural and functional replacement of lost or damaged tissues. Current therapeutical approaches are to transplant cells, implant bioartificial tissues, and chemically induce regeneration at the site of the injury. None of them reproduces well the biological and biomechanical properties of hyaline cartilage.rnThis thesis investigates the re-differentiation of chondrocytes and the repair of cartilage mediated by signaling molecules, biomaterials, and factors provided in mixed cellular cultures (co-culture systems). As signaling molecules we have applied prostaglandin E2 (PGE2) and bone morphogenetic protein 1 (BMP-1) and we have transfected chondrocytes with BMP-1 expressing vectors. Our biomaterials have been hydrogels of type-I collagen and gelatin-based scaffolds designed to mimic the architecture and biochemistry of native cartilage and provide a suitable three-dimensional environment for the cells. We have brought chondrocytes to interact with osteosarcoma Cal 72 cells or with murine preosteoblastic KS483 cells, either in a cell-to-cell or in a paracrine manner.rnExogenous stimulation with PGE2 or BMP-1 did not improve the differentiation or the proliferation of human articular chondrocytes. BMP-1 induced chondrocytic de-differentiation in a dose-dependent manner. Prostaglandin stimulation from gelatin-based scaffolds (three-dimensional culture) showed a certain degree of chondrocyte re-differentiaton. Murine preosteoblastic KS483 cells had no beneficial effect on human articular chondrocytes jointly cultivated with them in hydrogels of type I collagen. Although the hydrogels provided the chondrocytes with a proper matrix in which the cells adopted their native morphology; additionally, the expression of chondrocytic proteoglycan increased in the co-cultures after two weeks. The co-culture of chondrocytes with osteoblast-like cells (in transwell systems) resulted in suppression of the regular de-differentiation program that passaged chondrocytes undergo when cultured in monolayers. Under these conditions, the extracellular matrix of the chondrocytes, rich in type-II collagen and aggrecan, was not transformed into the extracellular matrix characteristic of de-differentiated human articular chondrocytes, which is rich in type-I collagen and versican.rnThis thesis suggests novel strategies of tissue engineering for clinical attempts to improve cartilage repair. Since implants are prepared in vitro (ex-vivo) by expanding human articular chondrocytes (autologous or allogeneic), we conclude that it will be convenient to provide a proper three-dimensional support to the chondrocytes in culture, to supplement the culture medium with PGE2, and to stimulate chondrocytes with osteoblastic factors by cultivating them with osteoblasts.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al fine di migliorare le tecniche di coltura cellulare in vitro, sistemi a bioreattore sono sempre maggiormente utilizzati, e.g. ingegnerizzazione del tessuto osseo. Spinner Flasks, bioreattori rotanti e sistemi a perfusione di flusso sono oggi utilizzati e ogni sistema ha vantaggi e svantaggi. Questo lavoro descrive lo sviluppo di un semplice bioreattore a perfusione ed i risultati della metodologia di valutazione impiegata, basata su analisi μCT a raggi-X e tecniche di modellizzazione 3D. Un semplice bioreattore con generatore di flusso ad elica è stato progettato e costruito con l'obiettivo di migliorare la differenziazione di cellule staminali mesenchimali, provenienti da embrioni umani (HES-MP); le cellule sono state seminate su scaffold porosi di titanio che garantiscono una migliore adesione della matrice mineralizzata. Attraverso un microcontrollore e un'interfaccia grafica, il bioreattore genera tre tipi di flusso: in avanti (senso orario), indietro (senso antiorario) e una modalità a impulsi (avanti e indietro). Un semplice modello è stato realizzato per stimare la pressione generata dal flusso negli scaffolds (3•10-2 Pa). Sono stati comparati tre scaffolds in coltura statica e tre all’interno del bioreattore. Questi sono stati incubati per 21 giorni, fissati in paraformaldehyde (4% w/v) e sono stati soggetti ad acquisizione attraverso μCT a raggi-X. Le immagini ottenute sono state poi elaborate mediante un software di imaging 3D; è stato effettuato un sezionamento “virtuale” degli scaffolds, al fine di ottenere la distribuzione del gradiente dei valori di grigio di campioni estratti dalla superficie e dall’interno di essi. Tale distribuzione serve per distinguere le varie componenti presenti nelle immagini; in questo caso gli scaffolds dall’ipotetica matrice cellulare. I risultati mostrano che sia sulla superficie che internamente agli scaffolds, mantenuti nel bioreattore, è presente una maggiore densità dei gradienti dei valori di grigio ciò suggerisce un migliore deposito della matrice mineralizzata. Gli insegnamenti provenienti dalla realizzazione di questo bioreattore saranno utilizzati per progettare una nuova versione che renderà possibile l’analisi di più di 20 scaffolds contemporaneamente, permettendo un’ulteriore analisi della qualità della differenziazione usando metodologie molecolari ed istochimiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit befasst sich mit der Rolle der extrazellulären Matrix und insbesondere des Proteins Fibronektin bei der Leberfibrose und bei der Einnistung von Tumorzellen in die Stammzellnische im Knochenmark.rnrnHierfür wurde in einem Fibrosemodell das Peptid pUR4b verwendet, welches die Assemblierung einer Fibronektinmatrix verhindert. Bei der Verwendung dieses Peptids während und nach der Induktion einer Leberfibrose durch die Chemikalie Dimethylnitrosamin konnte eine Verminderung der Kollagenmenge (und damit des fibrotischen Narbengewebes) in der Leber im Vergleich zu fibrotischen Kontrolltieren beobachtet werden. Darüber hinaus konnte gezeigt werden, dass dieser Effekt unabhängig von der Aktivierung der hepatischen Stellatezellen ist, jedoch zum Teil von einer verminderten Anzahl entzündlicher Zellen abhängig sein könnte. Eine verminderte Bildung von Gesamt- und aktivem TGF-β, welche zum Teil auf Effekte der verringerten Zahl der inflammatorischen Zellen zurückzuführen sein könnte, unterstützt den Effekt des verminderten Aufbaus von Narbengewebe. In vitro Untersuchungen zeigten, dass hepatische Stellatezellen bei einer Behandlung mit pUR4b weniger Fibronektin in die extrazelluläre Matrix einbauten als unbehandelte hepatische Stellatezellen. Insgesamt sprechen die Daten dafür, dass das Peptid pUR4b den Aufbau einer Fibronektinmatrix verhinderte bzw. verminderte, wodurch die Ablagerung anderer Komponenten der extrazellulären Matrix wie z.B. Kollagen gestört war und es daher zu einem Rückgang des fibrotischen Narbengewebes kam.rnrnFür die Untersuchung des Einflusses der extrazellulären Matrix und des Fibronektins bei der Einnistung von Tumorzellen wurde zunächst das Fibronektin mit Hilfe konditioneller Knockout-Mäuse in verschiedenen Zellen bzw. Organen der Tiere ausgeschaltet. Weder die Ausschaltung des zirkulierenden, noch des durch Osteoblasten und Osteozyten gebildeten, noch des zirkulierenden und von Zellen des Knochenmarks gebildeten Fibronektins beeinträchtigte die Einnistung von Tumorzellen. Auch die Bildung eines Hämatoms im Knochen hatte weder einen Einfluss auf die Einnistung von Tumorzellen noch auf die spätere Tumorentwicklung. Die Ausschaltung des tumorzellendogenen Fibronektins führte hingegen zu einer signifikant verminderten Einnistung von Tumorzellen. Diese ist wahrscheinlich auf die verstärkte Affinität dieser Tumorzellen zu Zellen des Immunsystems zurückzuführen. Diese Beobachtung konnte zum Teil durch eine verstärkte eCadherin Expression erklärt werden, welche die Bindung an verschiedene Zellen des Immunsystems vermittelt. Eine Untersuchung der osteoblastischen Stammzellnische durch die kombinierte Gabe von Parathormon und Zoledronsäure führte zu keiner Veränderung der Fibronektinkonzentration innerhalb des Knochenmarks der behandelten Tiere. Dennoch nisteten sich in dem Knochenmark der mit Parathormon und Zoledronsäure behandelten Tiere signifikant mehr Tumorzellen ein als in dem von Kontrolltieren. Dieser Effekt konnte auf einen synergetischen Effekt von Parathormon und Zoledronsäure zurückgeführt werden, der zu einer gesteigerten Osteoblastenaktivität und Änderungen der Zytokinkonzentrationen im Knochenmark führte.rnZusammenfassend zeigte sich, dass eine Veränderung der extrazelluläre Matrix und insbesondere des Proteins Fibronektin bei Leberfibrose zu einem veränderten Krankheitsbild führt und die Einnistung von Tumorzellen in das Knochenmark beeinflusst.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian teeth are composed of hydroxyapatite crystals that are embedded in a rich extracellular matrix. This matrix is produced by only two cell types, the mesenchymal odontoblasts and the ectodermal ameloblasts. Ameloblasts secrete the enamel proteins amelogenin, ameloblastin, enamelin and amelotin. Odontoblasts secrete collagen type I and several calcium-binding phosphoproteins including dentin sialophosphoprotein, dentin matrix protein, bone sialoprotein and osteopontin. The latter four proteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) because they display similar gene structures and because they contain an RGD tripeptide sequence that binds to integrin receptors and thus mediates cell adhesion. We have prepared all the other tooth-specific proteins in recombinant form and examined whether they might also promote cell adhesion similar to the SIBLINGs. We found that only ameloblastin consistently mediated adhesion of osteoblastic and fibroblastic cells to plastic or titanium surfaces. The activity was dependent on the intact three-dimensional structure of ameloblastin and required de novo protein synthesis of the adhering cells. By deletion analysis and in vitro mutagenesis, the active site could be narrowed down to a sequence of 13 amino acid residues (VPIMDFADPQFPT) derived from exon 7 of the rat ameloblastin gene or exons 7-9 of the human gene. Kinetic studies and RNA interference experiments further demonstrated that this sequence does not directly bind to a cell surface receptor but that it interacts with cellular fibronectin, which in turn binds to integrin receptors. The identification of a fibronectin-binding domain in ameloblastin might permit interesting applications for dental implantology. Implants could be coated with peptides containing the active sequence, which in turn would recruit fibronectin from the patient's blood. The recruited fibronectin should then promote cell adhesion on the implant surface, thereby accelerating osseointegration of the implant.