997 resultados para external morphology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The abundance and community composition of the endofauna in 2 species of sponge, Haliclona sp. 1 and Haliclona sp. 2 (phylum Porifera: order Haplosclerida), were examined at different sites on the slope at Heron Island Reef, in the southern Great Barrier Reef, on 2 separate occasions. Both species of Haliclona Occupy Similar habitats on the reef slope and are often found living adjacent to each other, but the major groups of secondary metabolites and the gross external morphology in the 2 species of sponge are different. The 2 species of sponge supported significantly different endofaunal communities, with Haliclona sp. 2 Supporting 3 to 4 times more individuals than Haliclona sp. 1. Fewer demersal zooplankton (copepods), nematodes and some peracarid crustaceans were found in Haliclona sp. I compared with Haliclona sp. 2. There were also differences in the numbers of spionid, nereidid and syllid. polychaetes living in the 2 species of sponge. The only taxon that was more abundant in Haliclona sp. 1 than Haliclona sp. 2 was the spionid Polydorella prolifera, and this difference was only evident on 1. of the 2 occasions. The amount of free space (pores, channels, cavities) for a given weight of sponge was only 19% greater in Haliclona sp. 2 than in Haliclona sp. 1, suggesting other factors, such as the differences in the allelochemicals, may have a role in determining the numbers and types of animals living in these 2 species of sponge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Linepithema micans Forel is a poorly studied species that is now considered a pest in vineyards in South Brazil. Larval characters have been used in a few phylogenetic studies, and their importance greatly depends in the amount of available information on different species. This study presents a complete panorama on the external morphology of the immatures of L. micans based on observations by light and scanning electron microscopy. The number of larval instars was estimated as three based on the frequency distribution of head widths of 965 larvae. Larvae of L. micans were similar to other Linepithema Mayr in the general format of body and mandibles, presenting a dorsal abdominal protuberance, nine pairs of spiracle, and unbranched hairs. On the other hand, L. micans was unique for having shorter hairs, predominantly denticulate, intraspecific variation in the number of antennal sensilla and in the types of sensilla on the labial palps were reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study investigates the effects of child internal (age/time) and child external/environmental factors on the development of a wide range of language domains in successive bilingual (L2) Turkish-English children of homogeneously low SES. Forty-three L2 children were tested on standardized assessments examining the acquisition of vocabulary and morpho-syntax. The L2 children exhibited a differential acquisition of the various domains: they were better on the general comprehension of grammar and tense morphology and less accurate on the acquisition of vocabulary and (complex) morpho-syntax. Profile effects were confirmed by the differential effects of internal and external factors on the language domains. The development of vocabulary and complex syntax were affected by internal and external factors, whereas external factors had no contribution to the development of tense morphology. These results are discussed in light of previous studies on the impact of internal and external factors in child L2 acquisition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hollow structures with unique morphologies form due to particle agglomeration in acoustically levitated nanofluid functional droplets when subjected to external heating. The final diameter of the structure depends only on the ratio of agglomeration to evaporation time scales for various nanoparticle laden droplets, and not on the type of the suspended particles. These time scales depend only on nanoparticle concentration. This valuable information may be exploited to form microstructures with desired properties from ceramic compounds. Phase diagrams for alumina and silica droplets indicate the transition from a bowl to ring structure depending on concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the morphology-controlled synthesis of aluminium (Al) doped zinc oxide (ZnO) nanosheets on Al alloy (AA-6061) substrate by a low-temperature solution growth method without using any external seed layer and doping process. Doped ZnO nanosheets were obtained at low temperatures of 60-90 degrees C for the growth time of 4 hours. In addition to the synthesis, the effect of growth temperature on the morphological changes of ZnO nanosheets is also reported. As-synthesized nanosheets are characterized by FE-SEM, XRD TEM and XPS for their morphology, crystallinity, microstructure and compositional analysis respectively. The doping of Al in ZnO nanosheets is confirmed with EDXS and XPS. Furthermore, the effect of growth temperature on the morphological changes was studied in the range of 50 to 95 degrees C. It was found that the thickness and height of the nanosheets varied with respect to the growth temperature. The study has given an important insight into the structural morphology with respect to the growth temperature, which in turn enabled us to determine the growth temperature window for the ZnO nanosheets. These Al doped ZnO nanosheets have potential application possibilities in gas sensors, solar cells and energy harvesting devices like nanogenerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell: Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets, Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscate pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of binary SB blend samples with various overall volume fraction of PS (Phi(PS)) and different discrete distribution of the block length (denoted as d(PS) or d(PB)) were prepared by mixing various asymmetric poly(styrene)-block-poly(butadiene) (SB) block copolymers with a symmetric SB block copolymer. The influences of the external solvent field, composition, and the block length distribution on the morphologies of the blends in the thin films were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The experimental results revealed that after solvent annealing, the interface of the blend thin films depended mainly on the cooperative effects of the annealing solvent and the inherently interfacial curvature of the blends. Upon exposure to the saturated vapor of cyclohexane, which has preferential affinity for the PB block, a "threshold" of Phi(PS) (approximate 0.635-0.707) was found. Below such threshold, the influence of the annealing solvent played an important role on the interfacial curvature of the blend thin film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The light output from nominally smooth Al-Ox-Au tunnel junctions is observed to be substantially independent of the deposition rate of the Au film electrode. Films deposited quickly (2 nm s-1) and those deposited slowly (0.16 nm s-1) have similar spectral dependences and intensities. (This is in contrast to roughened films where those deposited quickly give out less light, especially towards the blue end of the spectrum.) The behaviour can be interpreted in terms of the ratio l(ph)/l(em) where l(ph) and l(em) are the mean free paths of surface plasmons between external photon emissions and internal electromagnetic absorptions respectively. Once l(ph)/l(em) exceeds 100, as it does on smooth films, grain size has little further effect on the spectral shape of the light output. In fast-deposited films there are two compensating effects on the output intensity: grain boundary scattering decreases it and greater surface roughness increases it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the ability of an applied electric field to convert the morphology of a diblock-copolymer thin film from a monolayer of spherical domains embedded in the matrix to cylindrical domains that penetrate through the matrix. As expected, the applied field increases the relative stability of cylindrical domains, while simultaneously reducing the energy barrier that impedes the transition to cylinders. The effectiveness of the field is enhanced by a large dielectric contrast between the two block-copolymer components, particularly when the low-dielectric contrast component forms the matrix. Furthermore, the energy barrier is minimized by selecting sphere-forming diblock copolymers that are as compositionally symmetric as possible. Our calculations, which are the most quantitatively reliable to date, are performed using a numerically precise spectral algorithm based on self-consistent-field theory supplemented with an exact treatment for linear dielectric materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the lactating breast, the development of secretory alveoli consisting of differentiated cells arranged around a central lumen is dependent on signals from the extracellular environment of the cells. There are few cell lines that model this process. We previously showed that the human breast carcinoma line PMC42-LA can be induced to form organoids, reminiscent of secretory alveoli found in the lactating human breast. In this report, we used high-resolution scanning electron microscopy to show that the formation of organoids is accompanied by development of cell surface microvilli. Extracellular matrix-induced formation of microvilli occurred on the internal and external surfaces of cells in the organoids and not on surfaces in contact with the extracellular matrix. Organoid formation of PMC42-LA cells induced a rearrangement of the extracellular matrix, seen in the form of radiating fibers from the organoids. In summary, there is an interaction between PMC42-LA cells and the underlying extracellular matrix, which leads to the formation of polarized cells with well-developed microvilli. This is accompanied by organization of the extracellular matrix. PMC42-LA is a relevant model of the human breast for investigations into cell-cell and cell-matrix interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The vertical location of the implant-abutment connection influences the periimplant bone morphology. It is unknown, however, whether different microgap configurations cause different bone reactions. Therefore, in this study the bone morphologies of two different implant systems were compared.Material and methods: Three months after tooth extraction in eight mongrel dogs, two grit-blasted screw implants with internal Morse taper connection (ANK group) were placed on one side whereas the contralateral side received two oxidized screw implants with external hex (TIU group). One implant on each side was placed level with the bone (equicrestal), the second implant was inserted 1.5mm below bone level (subcrestal). After 3 months the implants were uncovered. Three months after stage two surgery, histometrical evaluations were performed in order to assess the periimplant bone levels (PBL), the first bone-to-implant contact points (BICP), the width (HBD) and the steepness (SLO) of the bone defect.Results: All implants osseointegrated clinically and histologically. Bone overgrowth of the microgap was seen in ANK implants only. No significant differences between ANK and TIU could be detected in neither vertical position for PBL and BICP. However, a tendency in favor of ANK was visible when the implants were placed subcrestally. In the parameters HBD (ANK equicrestal -0.23mm; TIU equicrestal -0.51mm; ANK subcrestal +0.19mm; TIU subcrestal -0.57mm) and SLO (ANK equicrestal 35.36 degrees; TIU equicrestal 63.22 degrees; ANK subcrestal 20.40 degrees; TIU subcrestal 44.43 degrees) more pronounced and significant differences were noted.Conclusions: Within the limits of this study, it is concluded that different microgap designs cause different shapes and sizes of the periimplant ('dish-shaped') bone defect in submerged implants both in equicrestal and subcrestal positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: It is unknown whether different micro gap configurations can cause different pen-implant bone reactions. Therefore, this study sought to compare the peri-implant bone morphologies of two implant systems with different implant-abutment connections. Materials and Methods: Three months after mandibular tooth extractions in six mongrel dogs, two oxidized screw implants with an external-hex connection were inserted (hexed group) on one side, whereas on the contralateral side two grit-blasted screw implants with an internal Morse-taper connection (Morse group) were placed. on each side, one implant was inserted level with the bone (equicrestal) and the second implant was inserted 1.5 mm below the bony crest (subcrestal). Healing abutments were inserted immediately after implant placement. Three months later, the peri-implant bone levels, the first bone-to-implant contact points, and the width and steepness of the peri-implant bone defects were evaluated histometrically. Results: All 24 implants osseointegrated clinically and histologically. No statistically significant differences between the hexed group and Morse group were detected for either the vertical position for peri-implant bone levels (Morse equicrestal -0.16 mm, hexed equicrestal -0.22 mm, Morse subcrestal 1.50 mm, hexed subcrestal 0.94 mm) or for the first bone-to-implant contact points (Morse equicrestal -2.08 mm, hexed equicrestal -0.98 mm, Morse subcrestal -1.26 mm, hexed subcrestal -0.76 mm). For the parameters width (Morse equicrestal -0.15 mm, hexed equicrestal -0.59 mm, Morse subcrestal 0.28 mm, hexed subcrestal -0.70 mm) and steepness (Morse equicrestal 25.27 degree, hexed equicrestal 57.21 degree, Morse subcrestal 15.35 degree, hexed subcrestal 37.97 degree) of the pen-implant defect, highly significant differences were noted between the Morse group and the hexed group. Conclusion: Within the limits of this experiment, it can be concluded that different microgap configurations influence the size and shape of the peri-implant bone defect in nonsubmerged implants placed both at the crest and subcrestally. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:540-547

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)