125 resultados para ethidium
Resumo:
Alternating (CG) sequences form an unusual conformation in the presence of cobalt hexamine. The oligomer, BZ-IV, containing a (CG)4 run (BZ-IV sequence: 5'TCGACGCGCGCGATCAGTCA- 3') was inserted at the Sal I site of the Escherichia coli pGEM-5zf(+) plasmid producing the plasmid pCW001. Hinf I digestion of pCW001 produced a 367 base pair (bp) fragment containing the BZ-IV insert. For controls, the 452 bp Hinf I fragment from the pCW001 plasmid and the 347 bp Hinf I fragment from the pGEM plasmid were used. Digestion studies were performed using the restriction enzymes Bgl I, EcoRV, Hha I, Mbo I, Not I, Pst I, and Taq I and methylation studies were performed using dam methylase. Data were obtained by beta scanning or ethidium bromide staining the polyacrylamide gels of the digestion or methylation products. The results show that in the presence of 100 uM cobalt hexamine, in which BZ-IV takes on a non-B-Z-structure, the enzyme's ability to react and cleave its recognition site is enhanced.
Resumo:
BACKGROUND AND OBJECTIVE: The main difficulty of PCR-based clonality studies for B-cell lymphoproliferative disorders (B-LPD) is discrimination between monoclonal and polyclonal PCR products, especially when there is a high background of polyclonal B cells in the tumor sample. Actually, PCR-based methods for clonality assessment require additional analysis of the PCR products in order to discern between monoclonal and polyclonal samples. Heteroduplex analysis represents an attractive approach since it is easy to perform and avoids the use of radioactive substrates or expensive equipment. DESIGN AND METHODS: We studied the sensitivity and specificity of heteroduplex PCR analysis for monoclonal detection in samples from 90 B-cell non Hodgkin's lymphoma (B-NHL) patients and in 28 individuals without neoplastic B-cell disorders (negative controls). Furthermore, in 42 B-NHL and in the same 28 negative controls, we compared heteroduplex analysis vs the classical PCR technique. We also compared ethidium bromide (EtBr) vs. silver nitrate (AgNO(3)) staining as well as agarose vs. polyacrylamide gel electrophoresis (PAGE). RESULTS: Using two pair consensus primers sited at VH (FR3 and FR2) and at JH, 91% of B-NHL samples displayed monoclonal products after heteroduplex PCR analysis using PAGE and AgNO(3) staining. Moreover, no polyclonal sample showed a monoclonal PCR product. By contrast, false positive results were obtained when using agarose (5/28) and PAGE without heteroduplex analysis: 2/28 and 8/28 with EtBr and AgNO(3) staining, respectively. In addition, false negative results only appeared with EtBr staining: 13/42 in agarose, 4/42 in PAGE without heteroduplex analysis and 7/42 in PAGE after heteroduplex analysis. INTERPRETATION AND CONCLUSIONS: We conclude that AgNO(3) stained PAGE after heteroduplex analysis is the most suitable strategy for detecting monoclonal rearrangements in B-NHL samples because it does not produce false-positive results and the risk of false-negative results is very low.
Resumo:
Human gene therapy has faced many setbacks due to the immunogenicity and oncogenity of viruses. Safe and efficient alternative gene delivery vehicles are needed to implement gene therapy in clinical practice. Polymeric vectors are an attractive option due to their availability, simple chemistry, and low toxicity and immunogenicity. Our group has previously reported biodegradable polyethylenimines (PEI) that show high transfection efficiency and low toxicity by cross-linking 800 Da PEI with diacrylate cross-linkers using Michael addition. However, the synthesis was difficult to control, inconsistent, and resulted in polymers with a narrow range of molecular weights. In the present work, we utilized a heterogenous PVP(Fe(III)) catalyst to provide a more controllable PEI crosslinking reaction and wider range of biodegradable PEIs. The biodegradable PEIs reported here have molecular weights ranging from 1.2 kDa to 48 kDa, are nontoxic in MDA-MB-231 cells, and show low toxicity in HeLa cells. At their respective optimal polymer:DNA ratios, these biodegradable PEIs demonstrated about 2-5-fold higher transfection efficiency and 2-7-fold higher cellular uptake, compared unmodified 25 kDa PEI. The biodegradable PEIs show similar DNA condensation properties as unmodified PEI but more readily unpackage DNA, based on ethidium bromide exclusion and heparan sulfate competitive displacement assays, which could contribute to their improved transfection efficiency. Overall, the synthesis reported here provides a more robust, controlled reaction to produce cross-linked biodegradable PEIs that show enhanced gene delivery, low toxicity, and high cellular uptake and can potentially be used for future in vivo studies.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.
Resumo:
Background: H19 is a strong candidate gene for influencing birth weight variation and is exclusively imprinted maternally. In an attempt to understand the relationship of this gene polymorphism with low birth weight children, we investigated association of H19/RsaI polymorphism with low birth weight and normal birth weight in children and their mothers. Objectives: The aim of our study was to establish the association between H19 gene polymorphism and LW in children born in Pernambuco, state of Brazil. Patients and Methods: It were selected 89 children, 40 low birth weight (LW) and 49 normal birth weight (NW) and 71 mothers (40 mothers of newborns NW and 31 mothers of newborns LW) attended at Dom Malan Hospital, Petrolina, Pernambuco - Brazil. Peripheral blood samples were collected from patients and genomic DNA was extracted and detected by electrophoresis agarose gel, stained by Blue Green Loading Dye. DNA PCR amplification was done using the primers H1 (sense) and H3 (antisense). PCR products were digested with RsaI and electrophoresed on agarose gel stained by ethidium bromide. Statistical analyses were performed using the program BioEstat version 5.0. Results: The RsaI polymorphism in the H19 gene showed that genotype frequencies did not differ statistically between low birth weight (AA = 12.5%, AB = 45%, BB = 42.5%) and control (AA = 8.6% AB = 36.73%, BB= 55.10% groups) and the allele frequencies were not significantly different (P = 0.2897). We also did not observe any association between maternal H19 allele polymorphism and low birth weight newborns (P =0.7799) or normal birth weight children (P = 0.8976). Conclusions: The small size of sample may be the explanation for these results; future studies with more patients are needed to confirm the effect of H19/RsaI polymorphism on birth weight of LW newborns.